A conversational agent system and

 its application to electronic commerce

Tamami SUGASAKA, Kyoko TANAKA, Ryusuke MASUOKA, Akira SATO,

Hironobu KITAJIMA and Fumihiro MARUYAMA

{tamami, hikari, masuoka, satoyan, kitajima, superb}@flab.fujitsu.co.jp

Abstract

We are investigating the seamless integration of information distributed over networks and its application to EC (electronic commerce) using a conversational agent system. Under the SAGE (Smart AGent Environment) project, we have constructed a first prototype, called SAGE:Francis, in which conversational agents communicate in ACL (Agent Communication Language) and cooperate to solve a problem. SAGE:Francis has a search function that is based on compound terms. The search function allows users to comparison shop at multiple companies. We had already collected results from an experiment with some legacy database applications that use different names and category structures. SAGE:Francis successfully integrated information about commodities stored in these databases. Next, we are trying to search for not only individual commodities but also sets of commodities with value-added services so that congenial or economical combinations are indicated, or substitutes are offered.

In this paper, we describe SAGE:Francis by focusing on propose extending it to search for sets of commodities, and discuss its smart interface, protocol, and ontology.

1. Introduction

In recent years, the use of network infrastructures has spread rapidly together with the continuing diffusion of information in society. Therefore, a technology is required to support the seamless integration of required information in various information sources. Our work emphasized the integration of disparate information sources, reuse of existing resources (mainly databases), and the implementation of practical systems.

To integrate and access sources of information that are distributed over a network, handle the formats that differ according to the respective providers, and ensure smooth and lasting access and distribution of this information, the following features are required: (1) a common communication protocol and vocabulary between the provider and user, (2) a mechanism for selecting the most suitable source of the requested information, (3) a translation function for terms that differ between the user and provider, and (4) a translation function for irregular terms among providers.

Out solution to the aforementioned problems are software agents that communicate in ACL (Agent Communication Language). With such agents in mind, we are developing a smart agent environment called SAGE. The main research issues connected with the development of SAGE are as follows:

· Agentification of users and legacy applications

· Facilitation of interoperation between agents by mediator agents

· Message formats and transactions

· Libraries and tools for the above

· Real-world applications

To demonstrate the applicability of SAGE to a real-world system, we are trying to apply this system in electronic commerce (EC).

 EC can be divided into two categories: business-to-consumer EC and business-to-business EC.

An example of business-to-consumer EC is an electronic mall that provides online shopping via the Internet. The following describes the general approach for this form of business-to-consumer EC : Vendors on the Internet gather under a single address and establish an electronic mall. In this case, a reference menu for the site is prepared in advance, and information about the goods that the vendors offer is put together into a single list a virtual display. This display is followed by certain pre-selected conditions. Since commodity information appears in an index that is linked to the individual sites of vendors, the goods made available by electronic vendors are seamlessly displayed in the electronic mall for easy comparisons. For business-to-consumer EC, the following questions must be answered. How can a suitable index server be built? How can commodity information be collected? How can commodity information be registered? And above all, an easy and simple interface must be provided.

On the other hand, business-to-business EC has to support a variety of different functions, such as searching for products, price negotiations, procurement, and payment. Several technologies that provide and support these functions are available on the market, including WitWeb from Fujitsu, TradeLink from Hitachi, and a digital market place from TRADEX. These systems operate on a centralized server that provides the related services. As the size of the system grows, however, the use of distributed servers must be supported. These systems might also have to be integrated.

We chose to try SAGE out on business-to-business EC first, rather than business-to-consumer EC or other applications, because of the following two reasons. First, we can get resources and support from enterprises in building practical systems for them. Second, the restricted environment of business-to-business EC makes initial deployment easy. With this test application called SAGE:Francis, we successfully integrated legacy databases from different companies.

As the next step, we are trying to apply SAGE to business-to-consumer EC. EC will hold a broad share of the market, from companies to ordinary homes. EC is expected to be the main selling channel, but so far, that Internet shopping is done in ordinary homes .

SAGE has been productized. The product is called AGENTPRO, which runs on INTERSTAGE, the CORBA-compliant middleware of Fujitsu. Our next prototype uses AGENTPRO.

2. SAGE:Francis with Set Search

2.1. Functions

In SAGE:Francis, the following two functions were implemented as a search function for inter-company EC.

· Commodity search by compound conditions is a function that allows users to specify compound conditions for commodities, such as categories, places of production, producers, prices, and quantities.

· List display and detailed display is a function that supports the comparison of commodities and displays more detailed information.

As the next step, the following functions have been added for a set search. User agent mainly handles these functions.

· Search for sets of commodities is a function that allows users to not only search for individual commodities but also sets of commodities. A priority can be specified to individual elements. For example, the meat of “shabu-shabu” is beef.

· Search commodities by the conditions in a whole set is a function that allows users to specify the conditions to a whole set, such as budget, delivery day, and calorie, along with the detailed conditions on individual elements.

· Menu creation from legacy knowledge is a function that automatically creates a menu from value-added legacy knowledge such as recipes.

· Change a menu dynamically is a function that updates the menu based on the contents of real information sources.

2.2. Architecture

Figure 1 shows the architecture of SAGE: Francis.

1[image: image1.png]Browser Browser Browser Browser

HTML etc. I I 1 1
User User User User
Agent Agent Agent Agent

ACL Facilitator
Database Database Database Database
Agent Agent Agent Agent
SQL etc.

WitWeb ‘Wholesaler Producer ‘Wholesaler

Database Database Database Database

Figure : Architecture of SAGE:Francis
SAGE:Francis consists of user agents (UA), facilitators (FA) and database agents (DBA). All agents communicate via ACL, which consists of KQML (Knowledge Query and Manipulation Language) and KIF (Knowledge Interchange Format). The two main functions of UAs are to process conversions between ACL and the Internet browser language HTML, and to offer a support service for users. One of the main functions of DBA is to process conversions between ACL and SQL, the language of such DB applications as Oracle or MS Access. Two other key functions include converting DB data into virtual knowledge that can be used by DBA, and informing FAs of the capabilities of DBAs (a function called “advertising”). The main functions of FAs, which act as mediators between UAs and DBAs, consist of forwarding messages to suitable DBAs, integrating results, replying accordingly if there are no suitable agents, and translating terms between agents.

2.2.1. Facilitator

Figure 2 shows the architecture of the FA.

2[image: image2.png]Protocol Inference

processor engine
I I Inference
Agent Knowledge base

communication Advertise
module Ontology
Parse and create Translation
KQML message
ACC ACC: Agent Communication Channel

‘ INTERSTAGE(CORBA) H Othre agents

Figure : Facilitator

[Agent communication module] With this module, FA communicates with other agents via ACC (Agent Communication Channel). This module stores all received messages that can be read from other modules via function calls.

[Protocol processor] This module manages message exchanges. A session is defined as any activity in a range from UAs sending out queries to DBAs to DBAs sending back the replies to UAs. This module confirms whether a timeout occurs or whether the conditions for returning a reply were satisfied for each fixed interval. If a timeout occurs, a message containing the results that were collected until that timeout is output through the agent communication module. If reply processing is successful, a message containing all results that were collected is output. In all other cases, a “database agents are not available” message is output.

 [Inference engine] KQML messages are analyzed and the relevant performative processing modules are activated. The messages initiate processes using information stored in the knowledge base, and the results are sent to the protocol processor. The module for correspondence to DBA category replies with DBAs dealing with the category and the module for correspondence to DBA messages replies with DBAs dealing with the message format. The translator module translates a message into the appropriate terms for the corresponding DBA.

[Knowledge base] This knowledge base consists of three types of information: advertise, ontology, and translation. Knowledge base has the functions of storing “advertise” information (such as categories and accessible fields) from DBA and executing requests to performative processing modules in the inference engine.

2.2.2. Database agent

One of the main functions of DBA is translation between ACL and SQL, where SQL is a language of DB applications (e.g., Oracle, Access). Another key function of DBA is advertising its available information and capabilities to FA. Figure 3 shows the architecture of DBA.

[image: image3.png]Database access }‘ IDBC ﬁ
logic RDBMS
§ t
Translation logic
(ACL «—SQL)
| t

v

management

System

Agent communication ‘

_ module
}

ACC ACC: Agent Communication Channel

‘ INTERSTAGE(CORBA) H Other agents

Figure 3 : Database agent

[System management] This module manages threads, logs, errors and warnings, parsed parameters of command, and properties of sets.

[Agent communication module] This module is identical to the agent communication module of FA described in Section 2.2.1.

[Translation logic] This module controls the timing of the “advertise” function, analyzes KQML messages, converts KIF messages into SQL commands, converts messages from DB into KIF messages, and generates KQML.

[Database access logic] This module accesses databases using JDBC.

[RDBMS] Data is managed with legacy DB applications, such as Oracle and MS Access.

2.2.3. User agent with set search function

One of the main functions of UA is translation between requests from a browser and ACL messages. Furthermore, in this prototype, UA provides service functions for a set search. Figure 4 shows the architecture of UA.

[image: image4.png]User logic communcation l .| Userlogic
module (UI)
k=] | A
15} + |
g
5 %’3 Service logic
@ & —

v
Agent communication
module

l

ACC ACC: Agent Communication Channel

:

‘ INTERSTAGE(CORBA) H Other agents

Figure 4 : User agent

UA consists of a display system on the user side and a process system on the server side. The server and user communicate via HTTP. After receiving a message from the user side, the httpd function on the server side communicates with the process system using CGI or NSAPI.

[System management] This module is identical to the system management of DBA described in Section 2.2.2.

[Agent communication module] This module is identical to the agent communication module of FA described in Section 2.2.1.

[User logic (UI: User Interface)] An applet displays the search condition and its result.

[User logic communication module] The server and user communicate in the same encoding method (URL-encoded keyword-value pairs) that is used for HTML forms. In addition, this module manages user information to provide user authentication for an applet and to generate use messages.

The new functions described in Section 2.1 have been added to the prototype. Since these functions are handled by UA, the service logic of UA consists of the following modules.
Figure 5
 shows the service logic.

[image: image5.png]User logic communication module

| Sirvice management

. ‘

A\ v
‘ ACL message

management
)y

voo
Agent communication module

Figure 5 : Service logic in UA

[Service management] This module manages each service. The suitable service is selected by the query from user logic.

[Search management service] This module handles the search query. A set is divided into elements and each element is searched. Using the results from each element, result sets are created based on the conditions in a whole set.

[Menu management service] This module handles a query about a menu. One function creates a menu from value-added legacy domain knowledge such as recipes. Another function updates the menu based on the contents of real information sources. UA asks FA whether commodities exist in sources of information. If a commodity is missing, user agent shows either nothing or a menu with a substitute.

 [ACL message management] This module generates KIF contents according to user requests, stores the contents of KIF messages, and outputs KQML messages to FA. Conversely, this module analyzes KQML messages, determines suitable functions, analyzes KIF reply messages against the stored original message, and generates suitable matches of items and values.

3. Techniques

3.1. Interface between Agents

To enable agents to communicate via ACL, agents have virtual knowledge bases (VKBs). VKB is a set of KIF sentences. Transactions between agents are realized as accesses to the VKB of the other agent. The access operations are specified by commands called the “performative” of KQML.

3.1.1. Performative of KQML

In SAGE:Francis, the following KQML performatives are specified:

· [ask-all/ask-one] Asking a question.

· [ask-all-specified/ask-one-specified] Asking a question to the specified DBAs.

· [reply] Replying with a result.

· [advertise+] Announcing capabilities.

· [unadvertise+] Canceling advertise.

· [achieve] Requesting the specified operation.

· [cancel] Canceling an operation.

· [sorry] Answering that “reply” is impossible.

A combination of these performatives means a transition of message between agents. The transition defined as 10 protocols, which are

“sage_cancel_1.0”,

“sage_request-advertise_1.0”,

“sage_advertise_1.0”, “sage_unadvertise_1.0”,

“sage_ask-all_1.0”, “sage_ask-all-specified_1.0”,

“sage_ask-one_1.0”,“sage_ask-one-specified_1.0”,

“sage_tell_1.0”, “sage_check-status_1.0”.

3.1.2. Relation of KIF

In SAGE:Francis, four kinds of relationships are supported:

· Matching of a specified field with its value in a VKB record (e.g., commodity name, and category.)

· Arithmetic comparisons of numerical values (e.g., $=<, >=$.)

· Logical combinations (e.g., and, or.)

· Secondary information (e.g., number of records, total sum, average, maximum, minimum, first element, last element.)

3.2. “Advertise” Function

DBAs inform FAs of their capabilities so that efficient access from other agents becomes possible. In SAGE:Francis, the following elements of information about VKB are announced by the “advertise” function:

· Name of VKB

· Categories covered by VKB

· Ontology used for VKB

· Protocol for accessing VKB

· Fields of VKB

Figure 6 shows an example of the “advertise” function. In this example, DBA advertises the following information: The name of VKB is “ebisu-dba”. The treated informa​tion is “beef”. The ontology is “ebisu”. The protocol, which can be used for access, are “sage_ask-all_1.0”, “sage_advertise_1.0” and so on. The fields in VKB are “CTGRY,” “CORP,” “PRICE,” “GRADE,” and so on, and belong to SITEMX.

(needs-class-expansion ebisu-dba)

(handles ebisu-dba ebisu '(beef ?x1) 'true)

(handles-ontology ebisu-dba ebisu)

(handles-protocols ebisu-dba

 '(sage_ask-all_1.0 sage_advertise_1.0 sage_unadvertise_1.0
 sage_management_1.0 sage_check-status_1.0))

(handles ebisu-dba ebisu '(SITEMX ?x1) 'true)

(handles ebisu-dba ebisu '(CTGRY ?x1 ?x2) '(kif-variable ?x2))

(handles ebisu-dba ebisu '(CORP ?x1 ?x2) '(kif-variable ?x2))

(handles ebisu-dba ebisu '(PRICE ?x1 ?x2) '(kif-variable ?x2))

(handles ebisu-dba ebisu '(GRADE ?x1 ?x2) '(kif-variable ?x2))
Figure 6 : Example of advertise

3.3. Translation between ontologies

Organizations usually develop their own databases that have their own terminologies. To make the integration of these separate databases a reality, SAGE provides for DBAs a message translation service, which is one of the main services that FAs provide.

DBAs advertise to FAs the names of the ontologies that DBAs are using. DBAs can also advertise information related to message translation. Alternatively, FAs can load translation-related information from files separately. FAs then translate the contents of ACL messages based on this knowledge before sending the messages to DBAs.

Messages are translated by searching for a template KIF statement within the contents of the message and replacing it, if possible, by an appropriate KIF statement. Template KIF statements may contain variables to match different structures. The variables in the matched KIF statement are replaced with the appropriate elements before the template KIF statement is replaced. Using this mechanism, both items and values in KIF statements can be translated.

Even though FAs provide translation services, there must nevertheless be occasions that determine the actual contents of translations from one ontology to another. The person who manages the database has to perform this function.

For this reason, we plan to provide a visual tool for aligning two ontologies and subsequently producing translation information between these two ontologies. We named this tool OAT (Ontology Alignment Tool) and are currently working on its development. The interface of the OAT is shown in Figure 7.

[image: image6.png]Kualdge forcooking
Recipes
Cagory bidvetisng | | Conmuodity | | Commodity | | Comunadity
Information | | Ontology £} £}
e server o
Mem nanagenent Fa Py Y
Seauch managenent (AGENTPRO) (AGENTFRO) || (SGENTFRO)

\ somma oo \

INTERSTAGE

Figure 7: OAT interface
4. Prototype

We have set up the agent system prototype by enhancing SAGE:Francis.

4.1. Experiment Setup

[image: image7.png]Order Set Menu
[Epecial Plate Bet

[Steak Plate Set |
Fam Plate Set A
Hors o osuure Set
[Today's Recommend P

il Pate Set

Beel @ Beot
© pork

Veeetable © Potate
€ Gamot
€ orien
© Parseley
& Broccol
& Garlc

Total Price.

ok

[-[o0x]

Set food for how many people | 4

[Fteak Plate Set

-

]

detail

detail

detail

detail

detail

detail

detail

detail

Delivery Day (YYYY/MM/DD)

TO00/10704

2000 ven

el

Figure 8: Experiment setup

Figure 8 describes the experiment setup. We used one Web server, one UA, one FA, and two DBAs. UA, FA and DBAs communicate via AGENTPRO ACC (Agent Communication Channel) that runs on INTERSTAGE. UA is an improved UA of AGENTPRO. FA and two DBAs use AGENTPRO products. We set up two databases that have different field names and category structures for a commodity, one ontology for the commodity used by FA, and database for recipes and its categories as knowledge for cooking used by UA.

In this setup, search requirements were input into a Java applet (UI) that shows the menu created in the menu management module of UA, and a query was produced. In the search management of UA, the query is separated into queries for each commodity and the queries are separately sent to FA. Then, the results from the agent system were returned as a list, and the details of each item were displayed by clicking the corresponding button in the list.

4.2. Message flow

When a DBA starts, it advertises to FA categories, message formats and ontology that it can handle. Such information is stored in FA.

Next, a user accesses the top service page and selects a category, such as “health,” “easy cooking,” and “outdoors cooking.” UA creates a menu for a set search using recipes of merged information. The search is based on the selected category and commodities that are the composition elements of the recipes. A user makes a query using the menu provided by the Java applet. Then, UA turns the query into an ACL message and sends it to FA.

FA chooses the appropriate DBAs that can handle the message and translates it for each DBA as necessary. Then, FA sends out the messages to the chosen DBAs and waits for the reply messages.

DBA, which receives the message from FA, changes the ACL message into a SQL query and checks the database. The result from the database is composed into an ACL message, and the ACL message is sent back to FA.

FA merges the messages from DBAs into one message and sends it back to the UA that made the original query.

[image: image8.jpg]Menu Bar Ontology Editor Correlation Editor

&5 EeTeic
e by
= mcorr = i o

3 criLesn

TIVETTR,

T

Misenss B

Finally, the result is relayed to the Java applet, which displays the result in a list that has the details of each item.

4.3. User Interface

A user is shown three kinds of interfaces. The first is the menu screen that can specify the composition elements of a set and the conditions of a whole set. The second is the screen that can specify the detailed conditions that are the same for each element of a set as specified by first prototype of SAGE. The third is the screen that presents a combination for every set as the result.

[image: image9.png][-[o0x]

Item Detail
Ttem name [Beef fillet Beef Srloin &

Area Producer [Bperdeen angus 7]
Price [zom 2800 e,

L —

Deliverry Day

TO0O/0/0E] YYYY/MM/DD

Detail ¢ Stock farm producers)

Preservation [Ghled =

o el

[image: image10.png]Kualdge forcooking
Recipes
Cagory bidvetisng | | Conmuodity | | Commodity | | Comunadity
Information | | Ontology £} £}
e server o
Mem nanagenent Fa Py Y
Seauch managenent (AGENTPRO) (AGENTFRO) || (SGENTFRO)

\ somma oo \

INTERSTAGE

In this prototype, the menu generated from the information of a recipe is shown to a user. The element of the menu can be changed as desired. The delivery day, budget and other search requirements can be specified as conditions of the whole set. The detailed conditions of a commodity can be specified in the same way. The default value set up is used if the value is not necessary. A collective result is shown for every set.

Figure 9 : User interface (Input-1)

Figure 10 : User interface (Input-2)

Figure 11 : User interface (Output)

When “Steak Plate Set” is selected, the ingredients of “Steak Plate Set” is presented, because the favorite set is chosen.

Although the ingredients for four people are presented as default, the volume can be easily changed in the “Item Detail” screen.

If an expected product is not available in a database, it is dynamically displayed in the GUI as being out of stock.

5. Conclusion

We introduced in this paper the SAGE system and its application to EC, focusing on the implementation of agents and how the system works. We are now implementing a second prototype by enhancing SAGE:Francis. The second prototype has a search function for not only individual commodities but also sets of commodities; thus, value-added services can indicate congenial or economical combinations and offer substitutes. In addition, the second prototype has a menu management function that creates a menu from legacy knowledge and dynamically changes a menu based on real information sources so that repetition from users become unnecessary, and the burden on users decreases sharply.

Users’ greatest expectation from EC services seems to be the navigation to their goal in as few operations as possible, such as functions that automatically search for substitutes, indicate congenial or economical combinations, and support a variety of different functions, such as search, price negotiations, procurement, and payment.

Our future work includes features offering useful libraries and tools for service logic, and treating multiple ontology about tasks and domains.

Reference

1. Genesereth, M. R. and Ketchpel, S. P., “Software Agents”, Communications of ACM, Vol.37, No.7, pp 48-53, July 1994,.

2. Huhns, M. and Singh, M., “Conversational Agent”, IEEE Internet Computing Vol.1 No.2 pp.73-75.

3. Keller, A. M. and Genesereth, M. R., “Multi-vendor Catalogs: Smart Catalogs and Virtual Catalogs”, EDI Forum, Vol.9, No.3, pp87-93, 1996,.

4. Genesereth, M. R. and Fikes, R. E., “Knowledge Interchange Format Version 3.0 Reference Manual”, Technical Report Logic-92-1, Computer Science Department, Stanford Univ., 1992/6, http://logic.stanford.edu/papers/kif.ps

5. The DARPA Knowledge Sharing Initiative External Interfaces Working Group, “Specification of the KQML Agent Communication Language”, 1994/2/9,

 http://logic.stanford.edu/papers/kqml.ps

6. McCabe, F. G. and Clark, K. L., “April - Agent PRocess Interaction Language”, Lecture Notes in Artificial Intelligence 890, pp. 324-340, Springer-Verlag, 1995.

7. Genesereth, M. R. , Keller, A. M. and Duschka, O., “Infomaster: An Information Integration System”, Proceedings 1997 of ACM SIGMOD Conference, May 1997,

 http://infomaster.stanford.edu/

8. http://www.fujitsu.co.jp/hypertext/solution/industry/Package/Witweb/witweb.html

9. http://www.hitachi-tradelink.com/tradelink/

10. http://www.tradeex.com/
11. Choi, S., Stahl, D. O. and Whinston, A. B., “The Economics of Electronic Commerce, - The essential economics of doing business in the electronic marketplace”, Macmillan technical publishing, 1997.

12. Masuoka, R., Sugasaka, T., Sato, A., Kitajima, H. and Maruyama, F., “SAGE and Its Application to Inter-company EC”, Proceedings of PAAM98, pp.123-135, 1998,.

13. Sugasaka, T., Masuoka, R., Sato, A., Kitajima, H. and Maruyama, F., “An application of multi-agent technology to electronic commerce - SAGE”Francis -”, Proceedings of I’MEDIAT’98, 1998,

 http://context.mit.edu.imediat98/paper4/

14. Sugasaka, T., Masuoka, R., Sato, A., Kitajima, H. and Maruyama, F., 1999, “SAGE and Its Application to Electronic Commerce –SAGE:Francis A System Based on “Virtual Catalog””, Journal of Systems and Computers in Japan, Vol.30, No.6, pp.36-46.

� EMBED Paint.Picture ���

[image: image11.png]B Deal Sethenu (Detai) W

The Price disired 2,500] ¥en

[-[o0x]

=
— =
& 1 Candidate 2500 en -
name Area Price Weight Unit De
Beef Beef Fillet Angus 2,200 800 218¢
Vegitable Potate local 300 200 218¢
Broceoli local 300 300 218¢
Garlic local 100 400 219¢
€2 Candidate 3] en
name Area Price Weight Unit De
Beef Beef Fillet Angus 2,300 800 218¢
Vegitable Potate local 300 200 218¢
Broceoli local 320, 300 218¢
Garlic local 200 400 219¢
€ 3 Candidate S0 e
name Area Price Unit De
Beef Beef Fillet Angus 2,350 800 218¢
Vegitable Potate local 300 200 218¢
Broceoli local 220, 300 218¢
Garlic local 180, 400 219¢
© 4 Candidate [_aam| v
rame Area Price Unit De =+

Otk [

o

_1009151058.doc
[image: image1.png]Database access }‘ IDBC ﬁ
logic RDBMS
§ t
Translation logic
(ACL «—SQL)
| t

v

management

System

Agent communication ‘

_ module
}

ACC ACC: Agent Communication Channel

‘ INTERSTAGE(CORBA) H Other agents

_1009179034.doc
[image: image1.png]User logic communcation l .| Userlogic
module (UI)
k=] | A
15} + |
g
5 %’3 Service logic
@ & —

v
Agent communication
module

l

ACC ACC: Agent Communication Channel

:

‘ INTERSTAGE(CORBA) H Other agents

_1009181699

_1009173999.doc
[image: image1.png]Protocol Inference

processor engine
I I Inference
Agent Knowledge base

communication Advertise
module Ontology
Parse and create Translation
KQML message
ACC ACC: Agent Communication Channel

‘ INTERSTAGE(CORBA) H Othre agents

_1009094047.doc
[image: image1.png]Browser Browser Browser Browser

HTML etc. I I 1 1
User User User User
Agent Agent Agent Agent

ACL Facilitator
Database Database Database Database
Agent Agent Agent Agent
SQL etc.

WitWeb ‘Wholesaler Producer ‘Wholesaler

Database Database Database Database

