
Dynamic Service Discovery and Management in Task Computing

Zhexuan Song Yannis Labrou Ryusuke Masuoka
Fujitsu Laboratories of America

8400 Baltimore Avenue, Suite 302
College Park, Maryland 20740-2496, USA

{zsong, yannis, rmasuoka}@fla.fujitsu.com

Abstract

Task Computing ([4, 5]) enables a user to compose and
execute complex tasks in application-, device- and service-
rich environments. Task Computing is possible through the
availability of semantically described services that, thanks
to their semantics, can be composed on-the-fly by end-users
into executable tasks. Through the use of a Task Comput-
ing Client, users can not only compose tasks from available
semantically described services, but discover, create, man-
age and manipulate services as well.

The focus of this paper is the technologies used for dy-
namic service discovery, and creation, management and
manipulation of semantically described services.

1. Introduction

Task Computing [4, 5] is a user-oriented framework
that lets non-expert users accomplish complex tasks in
application-, device-, and service-rich environments. Task
Computing provides myriads of ways for the users to inter-
act with and through ubiquitous environments.

Some examples of the complex tasks that can be defined
and executed (both in real time) in our Task Computing
demonstrations are:

• Forwarding of a security video (or of an Internet TV
video stream) to any of a number of display devices
(TV, computer monitor, etc., or a friend’s TV) with-
out manually connecting cables.

• Dialing the work number of a contact from your Per-
sonal Information Management (PIM) using the phone
in a conference room you are visiting for the first time.

• Displaying on your browser the current weather infor-
mation at the location of a contact from your PIM, or
showing and printing the driving directions from your
current position to that location using a kiosk at a shop-
ping mall.

• Giving a presentation on a projector in the conference
room from your own computer or PDA (without con-
necting the VGA cable) and then depositing your pre-
sentation file in the room and let other people, who
later come into the room, to view or copy the presen-
tation.

Some of these scenarios are, of course, possible with
error-prone and time-consuming processes involving end-
less cutting and pasting and invocation of multiple applica-
tions by computer-savvy users. Yet, other scenarios would
be impossible without additional custom software develop-
ment. Task Computing makes all of the above scenarios
possible with a few point-and-click operations, and most
importantly through a simplified and easily manipulable
view of the universe of possible actions, at any given point
(temporally and spatially). Furthermore, Task Computing
makes all of these (and many more) tasks possible with-
out explicitly programming for them [4, 5].

Figure 1 illustrates the Task Computing perspective. In
architectural terms, Task Computing is comprised of four
distinct layers (reminiscent of a typical 3-tier architecture).

• [REALIZATION LAYER] The bottom most layer en-
compasses the universe of devices, applications, e-
services and content, where all functionality available
to the user originates.

• [SERVICE LAYER] These various sources of function-
ality are made computationally available as services,
in the sense that service interfaces are employed to ac-
cess (execute) this functionality. Each service is asso-
ciated with at least one semantic description, which
sometimes may be created on-the-fly as services might
be created dynamically. Services are the abstraction
of functionality in the Task Computing universe, and
semantic descriptions of these services are meant to
shield the user from the complexity of the underlying
sources of functionality and make it easy (hopefully
trivial) for the user to employ these sources in accom-
plishing interesting and complex tasks.



Device Application E-service

Service ServiceService

Semantic 
Service

Description

Semantic 
Service

Description

Semantic 
Service

Description

Discovery
Engine

Execution & 
Execution Monitoring

Engine

Service
Composition

Engine

Management
Tools

Task 
Computing

Client
Applications

Realization
Layer

Service
Layer

Middleware
Layer

Presentation
Layer

Content

Web-based
Client

Service

Semantic 
Service

Description

Task Computing Environment

User

Figure 1. General architecture of Task Computing Environment

• [MIDDLEWARE LAYER] These lofty goals are enabled
by the middleware layer components that are in charge
of discovering services, deciding how services can be
composed, executing services and monitoring service
execution, and finally enabling and facilitating a vari-
ety of management tasks, including the creation and
publishing of semantically described services.

• [PRESENTATION LAYER] The most important aspect
of Task Computing is the presentation layer, which
uses the capabilities of the layers below in order to
provide the user with a “Task” abstraction of the com-
plexity of whatever lays underneath. We have devel-
oped a variety of clients for that purpose, such as voice,
textual and graphical interfaces, (referred to as Task
Computing Clients (TCC’s)), and a web-based inter-
face (utilizing a web browser). The presentation layer
presents to the user an environment where functional-
ity that can be transient and dynamically created can be
assembled (in real time) to perform users’ tasks. Since
the middleware layer components expose well-defined
service API’s, it is possible to create custom applica-

tions in the presentation layer in any development en-
vironments that can invoke Web Services.

The separation of these layers is both logical and imple-
mentational. We have found it useful for building an en-
vironment where the user can perform complex tasks that
have not been (neither implicitly nor explicitly) designed
into the system, thus multiplying the uses of the sources of
functionality (devices, applications, content and e-services).
Technically speaking, Task Computing is possible because
of the availability of dynamic service discovery, service
publishing and management, task creation, and execution
of tasks on-the-fly [9]. We have discussed the role of the se-
mantics and the details of task creation and execution in [5].
In this paper, we will focus on the first two issues, namely
dynamic service discovery, and service publishing and man-
agement.

The rest of this paper is organized as follows: In Section
2, we will discuss the challenges that we have to address;
in Section 3, we present in detail our approach and techni-
cal solutions to the identified challenges and in Section 4 we
evaluate our approach with respect to related work and dis-



cuss our future plans and work. Finally, Section 5 concludes
the paper.

2. Insights and Concepts

Task Computing depends on and uses Semantic Web,
web services, and ubiquitous computing technologies. But,
in order to deliver a real, functioning system in a truly dy-
namic and ad-hoc ubiquitous computing environment, we
needed to establish and implement the following:

• Complete separation of semantic service descriptions
(SSD’s) and service implementations

• Separation between discovery mechanisms and dis-
covery ranges and manipulation capability of services
within and between those ranges

• Ability for users (and services) to dynamically create
and manipulate services that can be made available and
shared with others (or made unavailable when neces-
sary)

• A variety of services that enable interesting and truly
useful tasks

Services are abstractions of functionality that is of inter-
est to the user. Such functionality generally emanates from
at least three different types of sources: devices, applica-
tions and over-the-web e-services. These three sources are
loosely defined categories, as the boundaries between these
categories are highly malleable. Broadly speaking, device-
originating services are associated with the core function-
ality that the device is designed to deliver. For example, a
phone’s (device) main functionality is making phone calls
(service). Similarly, application-originating functionalities
are associated with a computing application that is execut-
ing on a computing device. For example a PIM applica-
tion’s functionalities, includes storing and retrieving con-
tact information of persons. Finally e-services functional-
ity is associated with web services that are executing on
some remote server and deliver the functionality through
access to the web, beyond the boundaries of a user’s lo-
cal network. Occasionally a fourth source of functionality is
very useful, namely content that is made available as a ser-
vice; this type of service has proven practically very useful
as an information-sharing mechanism between users. This
broad categorization is only offered as rough way to distin-
guish between the nature of services, as service may belong
in multiple categories. It is worth noting that in Task Com-
puting the origins of such functionality is transparent to the
user as the user is mainly interested in combining such func-
tionality for the purposes of defining a task.

Service Discovery essentially refers to discovery of the
Semantic Service Description (SSD) of a service. From a
TCC’s perspective, only the SSD’s of services matter since

the SSD includes enough information for the users to ma-
nipulate the services. This separation of the actual imple-
mentation of a service and the metadata of the service (in the
form of semantics) means that any party can provide SSD’s,
not just the creator of the service. On the other hand, since
services in a typically dynamic ubiquitous environment are
highly transient, it is important that the availability of the
SSD is consistent with the availability of the service.

The possible tasks that a user can accomplish with their
TCC depend on the variety of functionality that is made
available to the user. The different types of services we men-
tioned require different discovery ranges. Services running
on a user’s device should be made available to at least the
user of the device (even though the user may choose to tem-
porarily disable them). In ubiquitous computing, though,
the subnet that a user’s device is connected to, offers a log-
ical localization mechanism, as such functionality may be
made available to all users in that subnet. On the other hand,
communities of users (identified by shared interests, orga-
nizational membership, etc.) should be able to share ac-
cess to a set of services intended for that community. Fi-
nally, there are services that are intended for general use
and any user on the network should have access to them
(being able to discover them and execute them). The dis-
tinction between service types (devices, applications, over-
the-web e-services, content) is orthogonal to the discovery
ranges just discussed. The latter can be thought of as lay-
ers of permissions in a file system (user, group, world)1 and
“permissions” refers to the ability to discover and execute a
service.

The notion of ownership applies to managing (modify-
ing) various features of the service, including its availabil-
ity. We have recognized that it is important that users can
create new services on-the-fly and use them as means to
share information with other users, to enable users to ac-
cess functionality that might have been previously unavail-
able to them, or in order to make functionality available to
themselves and other users. In some cases a user will create
a new web service with associated semantic descriptions,
while in others, the user is creating, sharing, or just mak-
ing available a semantic service description, which is ex-
actly what TCC’s require in order to effectively utilize a
service. In each of these cases, it is important that the user
has control over the created services (or the availability of
a semantic service description2), such as making them vis-
ible or invisible, determining who can discover (and subse-
quently execute) them, determine their temporal availabil-
ity, and so on.

1 where “group” bears two “meanings” (subnet and community)
2 The distinction between an actual service and a semantic service de-

scription becomes unimportant to the user in a Task Computing Envi-
ronment and is not reflected in the user’s UI.



3. Service Discovery and Management in De-
tail

In this section, we present in detail our approach towards
addressing the challenges discussed in Section 2, and in par-
ticular, the technical details for service discovery and man-
agement in Task Computing.

3.1. Separation of Service Implementation and Se-
mantic Service Description

We have implemented an environment with complete
separation of service implementation and corresponding se-
mantic description. As a result, users can discover ser-
vices, construct, and save tasks no matter where the ser-
vices (or tasks, i.e., service compositions) reside (locally on
the user’s device, ubiquitously on the subnet, or remotely
on the Internet) or which technology the services are im-
plemented in. The whereabouts and the implementation de-
tails of services are of no concern to users while they create
tasks and manipulate services in the semantic layer.

Two kinds of service technologies are used for imple-
mentations of services in the Task Computing Environment
(TCE), namely, web services and UPnP [12]. Both web ser-
vices and UPnP services use SOAP [10] (Simple Object
Access Protocol) for message encoding and usually HTTP
(Hyper-Text Transfer Protocol) for message transport. Both
of them define XML-based interface descriptions, namely
WSDL [13] for web service and Device Description for
UPnP. However, those interfaces do not contain sufficient
semantic information for end-users to manipulate them on-
the-fly.

Our solution is to use SSD’s to describe services at
the semantic level. The SSD’s in Task Computing are en-
coded in OWL-S language [8], which is a description lan-
guage for semantic services based on OWL [7]. We choose
OWL-S for SSD’s in TCE over extending WSDL because
a standard-based service description with built-in metadata
supports is essential for realization of separation of service
description and implementation. The SSD consists of three
parts: profile, process, and grounding.

• The profile part provides the high-level descriptive in-
formation of a service, including the name, the text de-
scription, semantic input and output of the service. We
also have additional parameters such as links to the
multimedia descriptions (in video, image, icon, audio,
etc.) and a user interface web page for users to inter-
act with the service when necessary.

• The process part describes the semantic level descrip-
tion of the process of the service and glues the profile
part and the grounding part.

• The grounding part is the most important part for the
realization of the separation. It describes where the ser-
vice implementation (in web services or UPnP) can be
found and how the semantic objects in the process part
and the parameters in the service implementation are
mapped to each other.

Note that the profile part allows users to manipulate ser-
vices in the semantic layer and the grounding part allows
users to actually invoke services. The relationship between
service implementations and SSD’s is one-to-many, namely,
one service implementation can have multiple SSD’s. This
design allows the developers to reuse the same Web Ser-
vices in many different contexts, simply by providing addi-
tional SSD’s.

Since SSD’s are just text files in OWL-S, they can be
moved, copied, emailed, or downloaded from a Web page.
In the rest of the paper, we use “discovery of a service” and
“discovery of the SSD of a service” interchangeably.

3.2. Service Discovery

We define service discovery as the process of finding
services related to a user’s context. Technically, given the
separation of service implementation and SSD, discovery
is reduced to the acquisition of the SSD’s of services by
TCC. The implementation of service discovery relies on one
or more discovery mechanisms; a TCC can exploit multi-
ple service discovery mechanisms and a particular service
might be discoverable through multiple discovery mecha-
nisms.

Users, or the services (or their providers) may set the dis-
covery mechanism employed for the discovery of a partic-
ular service. Changing the discovery mechanism for a ser-
vice, may affect who can and where one can discover a ser-
vice. Although service discovery mechanisms are orthogo-
nal to discovery ranges, we have found that some discovery
mechanisms are more suited for a specific discovery range
than others (see Table 1). We next elaborate on each discov-
ery range.

[Empty] Services in empty discovery range are those
that can not be discovered by anyone. Empty is not an en-
tirely conceptual range; any service that is made unavail-
able (even for its owner) may assume this range. For exam-
ple, a user does not want the service providing her contact
information discovered by others due to privacy consider-
ations, or even by herself because it is annoying to always
discover a service that she does not intend to use, and thus
may choose the empty range for this service. When, later,
she wants to use her contact for displaying on a kiosk the
route from the airport she is at to her home, she may move
the service into the private discovery range.

[Private] Services in the private discovery range are dis-
coverable only by their owner and typically reside on the



Discovery Range Example Discovery Mecha-
nism

Empty N/A
Private File system based discovery
Group by Subnet Multi-cast based discovery
Group by Interest Community directory, publish

/subscribe (company, commu-
nity)

Public Open semantic service directory

Table 1. Service discovery ranges and corre-
sponding discovery mechanisms

user’s own computing device which runs the TCC. For ex-
ample, the local resource handling services such as My File,
which lets the user select and expose a file on her device,
assumes (by default) this discovery range. We rely on a file
system-based discovery mechanism combined with notifi-
cations using sockets to implement this discovery range.

[Group by Subnet] The group by subnet discovery
range is most closely related to ubiquitous environments be-
cause of its ad-hoc and spontaneous nature of grouping. Ser-
vices that happen to be on the same subnet as the user, such
as a part of a company Intranet or a home network, will
be discovered, enabling a very localized discovery mecha-
nism.

We use UPnP as the discovery mechanism to implement
this range. Specifically, UPnP’s discovery mechanism is
used to find the UPnP devices on the subnet (not all of which
are Task Computing-enabled services) and for each UPnP
device, the TCC invokes one specific UPnP action (getDe-
scriptionURL) to determine if the UPnP device represents
a Task Computing-enabled service and if so, the TCC pro-
ceeds to download the SSD from the UPnP device. Other
discovery mechanisms such as JINI [2] can also be used in
the same way as UPnP to implement this discovery range.

[Group by Interest] This group by interest discovery
range refers to services discovered by any arbitrary group of
people, perhaps bound by similar interests or group mem-
bership, such as the group of employees of a company or the
members of a golf club. Currently we do not have a partic-
ular discovery mechanism for this discovery range, but we
plan to implement it by combining web services with call-
backs and polling mechanisms.

[Public] Services in this discovery range can be dis-
covered by anyone. A good discovery mechanism for this
range is an open semantic service directory; examples in-
clude Web pages with links to SSD’s of publicly available
services (a variant of the early days of Yahoo!), or a search
engine for semantic web services like UDDI [11]. Alterna-
tively, users can share the SSD’s by emailing them to each

other, or by sharing them over a peer-to-peer network.

3.3. Service Publishing and Sharing

We have created two tools, namely White Hole and PIPE
(Pervasive Instance Provision Environment), to support the
dynamic creation of services (service publishing) and their
dissemination (sharing). Technically speaking, these two
tools are used to semantic-ize, service-ize and publish (in-
formation) objects and services (see also Figure 2).

One of the scenarios enabled by the White Hole and
PIPE is as follows. A user finds a very good restaurant and
creates a contact entry of the restaurant in her PIM. She
drags and drops the contact entry into the White Hole to
create a contact providing service in PIPE. Later at a shop-
ping mall, she uses the service to show the route from the
mall to the restaurant and prints the map. Or at her friend’s
house, the friend invokes the service along with “Add into
PIM” service to save the restaurant contact in his PIM.

White Hole The White Hole component has a convenient
drag-and-drop interface for operating system or application
objects (such as files from the local machine’s operating
system, contacts of PIM application, etc.), semantic objects
in OWL format (or URL to the OWL file), and semantic ser-
vice descriptions in OWL-S format (or URL to the OWL-S
file). When something is dropped into the White Hole, the
tool first decides its type: (a) if it is an OWL or OWL-S ob-
ject, the White Hole just passes it to PIPE (discuss next);
(b) if it is a URL to a OWL or OWL-S file, the White Hole
downloads the content of the URL and passes it to PIPE; (c)
if it is a known (semantically speaking) OS/application ob-
ject the White Hole semantic-izes the object (see Table 2)

Semantic-ization is the process of creating a semantic
object from an OS/application object. We support approxi-
mately ten types of OS/application objects (such as file and
URL from OS, contact and schedule from PIM application,
etc.). White Hole determines the semantic type of objects by
their name, extension, and content. Once the type is deter-
mined, an OWL template for the type is retrieved and filled
with the values extracted from the original object. Then the
OWL description of the object is generated and passed on
to PIPE. For example, if a user drops a contact item from a
PIM application, the White Hole first loads the OWL tem-
plate for the contact type, then, retrieves the name, com-
pany, email, phone, etc., from the contact item, and fills
them into the template. Finally the complete OWL object
is passed on to PIPE.

PIPE PIPE is a tool to service-ize semantic objects and
to publish them (see Figure 2); the possible outputs of the
White Hole (semantic object in OWL or semantic service
description in OWL-S) need to be service-ized prior to pub-
lishing. So a service (with associated semantic description)



Semantic
-ization

Create a web service with
WSDL to publish the object 
instance, and generate an 
OWL-S file to describe the 

web service

OS/Application
objects

No
Processing

No
Processing

No
Processing

Semantic
objects

Semantic Service
Description

Publish the OWL-S
description file

Semantic objects

OWL-S service description
with grounding to web service

Allow Task Computing Client to discover

White 
Hole

PIPE

Figure 2. Procedure of semantic-izing, service-izing and publishing of objects and services

Input OS/Application Object Semantic object in OWL
or URL to it

SSD in OWL-S or URL
to it

Function Identify the object type,
create a semantic object

Obtain or download the
OWL file

Obtain or download the
OWL-S file

Output Semantic Object in OWL SSD in OWL-S

Table 2. Function of the White Hole application

is created, which when invoked, will return the semantic
object itself. Specifically, PIPE first dynamically creates a
web service, which returns the semantic object as its out-
put when invoked; next, a semantic service description for
the newly created service is generated (see Table 3). During
this process, the name, description, output type, and ground-
ing details of the service are determined and described in
a high level (in OWL-S). Our current implementation sup-
ports not only the objects we defined, but any OWL object
as well.

The outcome of the service-ization is a Semantic Service
Description, or SSD, which is either the original one that
the user dropped into the White Hole, or the one PIPE cre-

ated to describe the newly created web service. PIPE can be
used to publish the SSD depending on the discovery range
that the user chooses. For example, if the user wants to pub-
lish it as a group by subnet service, PIPE will create a UPnP
device with a getDescriptionURL action that points to the
OWL-S file.

Even though we described PIPE in relation to the White
Hole, PIPE is a completely independent tool with a web ser-
vice interface so that it can be called by any other compo-
nent in a TCE, and used to publish objects or services. One
important usage of PIPE is to realize a so-called “bank ser-
vice”, which is a persistent repository of semantic objects.
A bank service can be used by users in an environment to



Input Semantic object in OWL SSD in OWL-S
Function Create a web service, which provides

the semantic object (in OWL); gener-
ate an OWL-S file for the service; make
it available through a discovery range

Make the OWL-S file available within
a discovery range of choice

Output Published semantic service

Table 3. Function of the PIPE application

deposit such things as files, contacts, schedule, etc. as se-
mantic object providing services in the current environment
so that people (maybe later) can use those services to ac-
complish their own tasks.

PIPE also includes a management user interface which
helps users to organize the semantic objects or services that
the user has published through PIPE. The functions we have
implemented include:

• Switch discovery range The user can switch the dis-
covery range for the services published through PIPE,
for example, in order to temporarily “hold” services
(empty discovery range).

• Expiration time The user can set the expiration time
for the services, so that the service becomes undiscov-
erable after the expiration time.

• Invocation limit The user can set a limit for the num-
ber of possible invocations, so that the service becomes
undiscoverable after that number of invocations.

• Name/Description The user can set or change the
name and the text description of a service.

3.4. Implemented Services

We have implemented more than fifty semantic ser-
vices3. Each service has a service implementation and a
SSD created, except for publicly available services, for
which we only created SSD’s.

Some services are created from functionalities of the OS
and personal applications. For example, “My Video” lets the
user pick and expose a video file from her own device and
“Add Contact into PIM” lets the user insert a contact into
her PIM application. Other services are related to deliver-
ing a functionality of a device; for example, “View on Pro-
jector” displays on a projector web pages, presentation files,
etc. that are provided as input and lets the user control the
display (moving to the next slide, scrolling, etc). “View on
Projector” is a typical example of how we exposed the func-
tionality of a device as a service. The device (in this case a

3 We do not include the object providing services that can be dynami-
cally created through PIPE. Since PIPE can create a semantic object
providing services out of any OWL object, it would not be meaning-
ful to include them in the count.

projector) is physically linked to a small computer (typi-
cally a laptop) that runs a web server (necessary for the in-
vocation of a service using WSDL) and makes available a
web service interface to a custom application that imple-
ments (in a software layer) the functionality of a device.
The computer, which has a network connection (typically
wireless) publishes its services within the subnet and han-
dles all incoming requests. However, we expect that in the
near future, smarter devices will embed the hardware and
software necessary for running a web server and process-
ing web server and service calls. Yet, other services are run-
ning remotely on the Internet, such as the “Weather Info of”
service that returns a Web page with the weather informa-
tion for the address given as its input.

None of these services is particularly interesting by it-
self, but with the help of the TCC, a user can create and ex-
ecute powerful and useful tasks from combination of basic
services, such as the ones mentioned in the introduction.

4. Evaluation and Future Work

We have designed and implemented the capabilities de-
scribed in Section 3 except for the discovery mechanisms
for the group by interest discovery range; we have imple-
mented four types of Task Computing Clients, more than
fifty services, PIPE, White Hole, and all the modules of the
middleware layer of Figure 1. We have created a single in-
staller for all the components so that a user can install a TCC
or services in just a couple of minutes. Even though we pre-
sented a part of the approaches and solutions, we want to
emphasize that all the scenarios described in this paper can
be defined and executed in realtime by a user through her
TCC. Figure 3 shows a user’s desktop screenshot with some
TCE components (two TCC’s, White Hole and PIPE)4.

The separation of service implementation and its SSD,
and the distinction between discovery mechanisms and dis-
covery ranges have been implemented consistently through
out system and work smoothly to deliver the overall user ex-
perience and helped us localize system failures while build-
ing and debugging the system. In addition, by consistently

4 Still, a single screenshot conveys little of the dynamism of the imple-
mented Task Computing experience, so we plan to demo our complete
system at the conference.



observing these concepts we have implemented a modular
system, in which components can be easily modified, re-
placed and enhanced.

Task Computing seamlessly weaves the rich worlds of
personal applications and Internet-based e-services with
the devices and services in ubiquitous computing environ-
ment. Pieces of the puzzle have been worked on by other
researchers and industry. For example, technologies like
UPnP, HAVi [1], JINI, etc., address a part of the problem.
In general, those technologies are usable by the program-
mers who know the interface after reading many pages of
the standard. Each individual kind of device has a differ-
ent interface from others even within the same standard
and it is difficult to make them interoperate (for program-
mers and much more so for end-users.) The missing ele-
ment is the machine-understandable semantic for devices
and services with annotations for humans. Semantics plays
an essential role in ad-hoc environments, where the spon-
taneous nature of relationships between devices, services,
clients, etc., means that little a priori knowledge is available
about the other systems. The Semantic Web technologies
(OWL/OWL-S) give a foundation for such semantics so that
devices and services can have a common ground of inter-
operation. In fact, we have tried to use standard technolo-
gies wherever available and possible, such as Semantic Web
technologies (RDF, OWL, OWL-S), web services (SOAP,
WSDL), and ubiquitous computing technologies (UPnP).

Another research project with a similar scope as Task
Computing is the Obje Software Architecture [6] at PARC
(Palo Alto Research Center Inc.), described as “an inter-
connection technology that enables digital devices and ser-
vices to easily interoperate over both wired and wireless
networks”. Although a detailed comparison with that work
would be beyond the scope of this paper, we can summa-
rize as follows: conceptually, the two projects have a dif-
ferent way of abstracting the problem and its correspond-
ing layers. Task Computing being heavily invested in the
Semantic Web technologies, and technically, Task Comput-
ing relies on semantically described services as the univer-
sal abstraction of functionality. Obje relies on mobile code
to deliver device and service functionality to devices dis-
covered in the ad hoc environment.

Our work is not anywhere near completion. We believe
that at this point we have a robust enough platform, which
incorporates the proper abstractions, in order to pursue a va-
riety of different research directions. Increasing the degree
of automation (or assistance to the user) during task creation
is one such direction and we expect to utilize some plan-
ning capabilities in the inference engine of our system. Sav-
ing and re-using past tasks is another problem we are pur-
suing and we follow closely the evolution of OWL-S in that
regards. Addressing various aspects of security is another
avenue of future work; we plan to incorporate web services

security-related standards and semantics-based policy work
[3].

5. Conclusions

We envision Task Computing5 as a new metaphor for ac-
complishing tasks in the application-rich, device-rich and
service-rich computing environments that permeate daily
living. We have designed and built a complete functioning
system that utilizes standard technologies in a novel inte-
grated manner, from sources of functionality to end-user. In
the process, we strived to create a clear separation of func-
tional layers in order to facilitate a modularized engineering
of the overall system and to enable other researchers to uti-
lize components of our system, or to add and enhance the
overall functionality delivered to the end user. In this spirit,
we plan to release binaries of the modules of our implemen-
tation (of the clients, of the middleware layer modules and
of the services) to the broader community.

In this paper, we discussed some of our design choices
and implementations, from the perspective of the abstract
architecture of Task Computing. Specifically, we discussed
in detail the dynamic service discovery and creation, man-
agement and manipulation of semantically described ser-
vices in Task Computing.

Acknowledgements

We would like to thank Jim Hendler, Bijan Parsia, Evren
Sirin and Sam Chen for their participation in the Task Com-
puting Project.

References

[1] HAVi. http://www. havi. org/.
[2] JINI network technology. http://wwws. sun. com/ software/

jini/.
[3] L. Kagal, T. Finin, and A. Joshi. A policy based approach

to security for the semantic web. In Proceedings of the 2nd
International Semantic Web Conference (ISWC), 2003.

[4] R. Masuoka, Y. Labrou, B. Parsia, and E. Sirin. Ontology-
enabled pervasive computing applications. IEEE Intelligent
Systems, 18(5):68–72, September/October 2003.

[5] R. Masuoka, B. Parsia, and Y. Labrou. Task computing - the
semantic web meets pervasive computing. In Proceedings
of 2nd International Semantic Web Conference (ISWC), vol-
ume LNCS 2870, pages 866–881, Sanibel Island, FL, USA,
October 2003. Springer-Verlag Heidelberg.

[6] The Obje software architecture. http://www. parc. com/ re-
search/ csl/ projects/ obje/ default.html.

5 Task Computing relies on collaboration between Fujitsu Laboratories
of America, College Park and the MINDSwap group of University of
Maryland.



Figure 3. TCE Client Desktop - Two kinds of TCC (one in English and the other in Chinese), White
Hole at the upper left corner, and PIPE at the bottom.

[7] Web Ontology Language (owl). http://www. w3. org/ TR/
owl-features/.

[8] OWL-S: Semantic markup for web services.
http://www.daml.org/services/owl-s/1.0/owl-s.html.

[9] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composi-
tion of web services using semantic descriptions. In Proceed-
ings of Web Services: Modeling, Architecture and Infrastruc-
ture workshop in conjunction with ICEIS2003, April 2003.

[10] Simple Object Access Protocal (soap). http://www. w3. org/
TR/ SOAP/.

[11] Universal Description, Discovery and Integration of web ser-
vices. http://www.uddi.org.

[12] UPnP forum. http://www.upnp.org.
[13] Web Services Description Language (wsdl). http://www. w3.

org/ TR/ wsdl.


