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SUMMARY
In many of machine learning problems, it is essential to use

not only the training data, but also a priori knowledge about how
the world is constrained. In many cases, such knowledge is given
in the forms of constraints on differential data or more specifi-
cally partial differential equations (PDEs). Neural networks with
capabilities to learn differential data can take advantage of such
knowledge and easily incorporate such constraints into the learn-
ing of training value data.

In this paper, we report a structure, an algorithm, and re-
sults of experiments on neural networks learing differential data.
key words: neural networks, tangent prop, differential data

1. Introduction

In many of machine learning problems, it is essential to
use not only the training data, but also a priori knowl-
edge about how the world is constrained. In many
cases, such knowledge is given in the forms of con-
straints on differential data or more specifically partial
differential equations (PDEs).

Examples of such cases are given in [8] and [3].
Simard et al. [8] described how the invariance

of pattern recognition with respect to such as trans-
lations, rotations, scalings, etc. can be interpreted as
constraints on first order differential data. The output
of the neural network as a pattern recognizer should
stay same for such transformations of the input. That
constraint is interpreted as that directional derivatives
of the output with respect to the directions of transfor-
mations have to be zeros.

Hornik et al. [3] identified several areas of applica-
tions requiring approximation to an unknown mapping
and its derivatives, such as robot learning, deterministic
chaos, economics, sensitivity analyses, etc.

In this introduction, we describe two more possi-
ble areas of applications where learning constraints on
differential data give advantages.

The first possible area of application is simula-
tion of human arm movements by the minimum-torque-
change model (see [9]). In [4], Maeda et al. proposed a
cascade neural network model for such simulation. This
model uses one neural network for each discrete time
step, which produces expected torque values at that
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time step. Then those neural networks are connected
to produce difference between expected torque values
of consecutive time steps to approximate the differen-
tiation of torque, which in turn is used for the neural
networks to learn to minimize the difference. If we use
a neural network with elapsed time as input to the net-
work and with coordinates of arm positions as output,
we can implement the minimum-torque-change require-
ment as the third-order differential constraint on the
neural network. The neural network is much simpler
and the constraint can be implemented more naturally
by the neural networks learning differential data.

The other possible area of application is learning
physical values, which satisfy partial differential equa-
tions (PDEs). Neural networks learning differential
data should be especially useful where collecting data
is costly. We give an example taken from meteorology.
The temperature T and the wind velocity u satisfy the
following PDE, where t stands for the time.

∂T

∂t
+ (u · ∇)T = 0 (1)

It is very costly to add observation points for the tem-
perature and the wind velocity. For this kind of prob-
lem, we can use a neural network learning differential
data, with time and coordinate as input and tempera-
ture and wind velocity as output. With such a neural
network, we can use both the data from the existing ob-
servation points and the constraint given by the PDE
for the neural network to learn.

For those examples, neural networks with capabil-
ities to learn differential data can take advantage of
such knowledge as constraints on differential data and
incorporate such constraints easily into the learning of
training value data.

We give a brief history of research on neural net-
works learning differential data in the following para-
graphs.

In the research history of neural networks, there
first appeared existence theorems of a multilayer per-
ceptron, which approximates a given function. Funa-
hashi [1] showed that there is a three-layered percep-
tron approximating any C0 function with any preci-
sion, while Hornik et al. [3] showed there is also a
perceptron, which approximates any Cn function with
respect to Cn norm. On the other hand, learning of
neural network by using a training set of value data was
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justified by Gallant and White [2] who showed that a
sequence of perceptron-produced functions which gives
the least square error for randomly selected training
samples, converges almost surely to a given function
and its derivatives. These theorems, assuring the exis-
tence of convergent sequence of neural networks, give
an important base toward realization of neural networks
learning differential data.

However, these theorems are not very useful from
a practical point of view, firstly because the number
of training data required in the theorem would often
be unrealistically large to realize, and secondly because
practical learning methods do not necessarily give the
minimum for the least square errors. Instead, if avail-
able, we should employ differential data themselves as
learning data in the learning of neural networks. The
learning algorithm of neural networks for first order dif-
ferential data was first proposed under the name of ’tan-
gent prop’ by Simard et al. [8] who applied it to pattern
recognition problem.

As our contributions to neural networks learning
differential data, we gave results on noise robustness of
multilayer perceptron which learns first order differen-
tial data in [5].

Then in [6], we have introduced an algorithm of
multilayer neural networks learning differential data
of arbitrary order. The algorithm proposed let the
neural networks to learn differential data higher than
first order in such cases as the simulation of human
arm movement by minimum-torque-change model men-
tioned above. But there had been some minor mistakes
in details.

In this paper, we propose a correct algorithm of
multilayer neural networks learning differential data
of arbitrary order. The algorithm employs the back
propagation (BP) processes for derivatives of the tar-
get function up to the required order together with BP
for the target function itself. The algorithm is rather
simple for the first order differential data, but becomes
rapidly complex as the differential order increases.

The proposed algorithm is then implemented for
differential data of arbitrary order by coding it in the
form of C++ program to show that the proposed algo-
rithm is actually possible. The C++ implementation is
checked numerically against the neural network model
created in Mathematica [10].

By using the implementation, we carry out pre-
liminary experiments on neural networks learning dif-
ferential data and give some observations based on the
results.

The section 2 gives the structure and the algorithm
for the neural networks learning differential data. The
section 4 gives results of preliminary experiments on
the neural networks learning differential data and ob-
servations based on the results.

2. Algorithm for Learning Differential Data of
Arbitrary Order

We describe the architecture of an extended multilayer
perceptron and its algorithm to learn differential data.

2.1 Definitions

We give notations and their definitions.

n: dimension of the input to the network

δ = (a1, ..., an) ∈ {N ∪ {0}}n:
0 stands for (0, ...,0). We define half order > in
{N ∪ {0}}n as the following.

δ1 = (a1, ..., an) > δ2 = (b1, ..., bn)
↔
∃i ai > bi ∧ ∀i ai >= bi

We see {N ∪ {0}}n as the linear space, so that
δ1 + δ2, cδ are defined as such. We also use δ as
a differential operator. For δ = (a1, ..., an), we
define

∂N(δ)

∂δx
=

∂N(δ)

∂a1x1 ... ∂anxn
(2)

For a vector x = (x1, ..., xn), a real number xδ is
defined as follows.

xδ = xa1
1 × · · · × xan

n (3)

∆ = {(ci, δi) | i = 1, ...,m, ∀i, ci ∈ N,δi > 0}:
In the above definition, ∀i |= j ⇒ δi |= δj . We
give the following definitions related to ∆.

N(∆) = m (4)

T (∆) =
m∑

i=1

ci (5)

Sum(∆) =
m∑

i=1

ci × δi (6)

∆(f) =
∏

(c,δ)∈∆

(
∂N(δ)

∂δx

)c

(7)

V (δ) = {(dδ,∆,∆) | δ = Sum(∆)}:

Here dδ,∆ is a natural number defined by the fol-
lowing equation. f is a C∞ function from the
input space to the real number.

∂N(δ)

∂δx
ef =

∑
(dδ,∆,∆)∈ V (δ)

dδ,∆ ∆(f) ef (8)

p∆
l,i =

∏
(c,δ′)∈∆

(
yδ′

l,i

)c

:

This is defined by the equation (16) again.
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2.2 Framework of the problem

In this section, we will give the framework of the prob-
lem. n-dimensional input space, m-dimensional output
space † and a C l map from the input space to the out-
put space are given. There are also given several points
in the input space and the values of the map itself and
differentials †† of the map with respect to those points.
Kinds of values given can vary for each point. The val-
ues can include some error or noise.

The problem is to find a neural network that ap-
proximates the given mapping under these conditions.
We usually fix the network structure and make the
network learn the internal values such as weights and
thresholds from the given values.

2.3 Network Structure

Figure 1 shows the network structure that we propose
to learn the higher order differential data. This network
has extended parts in addition to a simple multilayer
perceptron. Extended parts are used for propagating
and back propagating differential data. This structure
is an extension of Jacobian network that was used for
tangent prop in [8]. On the left-hand side of figure 1
there are the units in the multilayer perceptron part,
which we call the value net. There is corresponding δ
net for each differential operator δ. Figure 1 shows one
of those δ nets on the right side.

δ net has xδ, yδ, and σ(m) units for each x0 = x
unit in the value net. σ(m) unit has input from the
value net, which figure 1 does not show. Connection
weights wi,j are same in the value net and δ nets.

We use the same symbol of the unit for denoting
the output of the unit. The input to the unit is de-
noted by prefixing “net �” to the symbol of the unit.
For example, the output of xδ

l,i of i-th unit in l-th layer
of δ-net is xδ

l,i and the input to the unit is net � x
δ
l,i.

The output of xδ
l,i unit in the δ net is the δ dif-

ferential of the corresponding unit in the value net by
the input to the network. The next equation shows the
relationship, where xI is the input vector to the value
net.

xδ
l,i =

∂N(δ)x0
l,i

∂δxI
(9)

The network structure is devised so as to realize the
chain rule of the δ differentials by the input vector.
Therefore the outputs of units in the output layer of
the δ net are the δ differentials of the corresponding
units in output layer of the value net by the input vec-
tor.

†Without any loss of generality, we assume one-
dimensional input space in the following treatment.

††The differentials are not necessarily along the axes.

xl - 1, 1 xl - 1, 2

wi, 1 wi, 2

x l, i

xl - 1, 1 xl - 1, 2
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yl, i

d

d

d d

yl, i
d'

.....

sl, i
(N(D))

.....

.....

sl, i
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0

x l, i
0

Fig. 1 Network structure for learning differential data: On
the left-hand side of figure there are the units in the multilayer
perceptron part, which we call the value net. There is corre-
sponding δ net for each differential operator δ. This figure shows
one of those δ nets on the right side. δ net has xδ , yδ , and σ(m)

units for each x0 = x unit in the value net. σ(m) unit has input
from y0

l,i units of the value net, which figure 1 does not show.

Connection weights wi,j are same in the value net and δ nets.

We use the symbol ε for what is propagated back-
ward through the network. The value of what is prop-
agated backward to the unit is denoted by prefixing
“ε �” to the symbol of the unit. For example, what is
propagated backward to xδ

l,i of i-th unit in l-th layer of
δ-net is ε � xδ

l,i.
We sometimes omit the layer in denoting weights

wi,j and thresholds bi. To be correct these should be
w{l,i},{l−1,j} and b{l,i}.

2.4 Learning Data

This section describes the learning data for the network.
The directions of differentiation for the learning

data need not be along axes. But we will limit to the
cases of differentiation along axes, since the general
cases need inessential and detailed explanation. The
learning data is several sets of input and output, which
called patterns.

The input part of the learning data for the network
has the form of I = (I0, ..., Iδ , ...). I0 is the coordinate
of the observation point and this is the same as in or-
dinary back propagation. I0 is a vector of the same
dimension as of the input space of the value net.

Iδ , the input to the δ net is also a vector of the
same dimension as of the input space of the value net.
In cases of N(δ) = 1, the input vector is δ itself, which
is a vector something like (0, ...,0, 1, 0, ...,0). In other
cases (i.e. N(δ) > 1), the input vector is 0, the zero
vector.

These are derived by thinking that the input to
the δ net is a special case of equation (9). The input
to δ net is δ differential of the input to the correspond-
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ing unit of the value net. In cases of N(δ) = 1, the
input vector is δ itself since ∂x0

0,i/∂x
0
0,i = 1 and since

∂x0
0,i/∂x

0
0,j = 0 if i |= j. In cases of N(δ) > 1, the

input vector is 0 since ∂x0
0,i/∂x

0
0,j∂x

0
0,k = 0 for the any

combination of {i, j, k}.
The output part of the learning data for the net-

work has the form of O = (O0, ...,Oδ , ...). All the ele-
ments of the output are the element of the output space
or “∗”. Oδ = ∗ means that there is no differential data
for δ and that there will be no back propagation for δ.

2.5 Forward Propagation

First we will give the algorithm for forward propaga-
tion. We will show how the input I = (I0, ..., Iδ , ...)
will be propagated forward through the network.

l stands for the layer in which the unit belongs.
It is not essential that there exists a layer structure in
the network. Here we assume the layer structure for
the ease of explanation. The same algorithm applies
for the networks without the layer structure.

2.5.1 Unit in the Value Net (FP)

Here we put y0
l,i = net � y0

l,i = net � x0
l,i. The value net

does not have any y0 unit as in δ net, but we assume the
above because of uniformity of the descriptions between
the value net and the δ net.

The algorithm for the forward propagation for the
unit in the value net is as follows. σ here is the squash-
ing function for the unit. In this paper we use the same
σ for every unit, but the same algorithm applies for the
cases where units have different squashing functions.

net � x0
l,i = y0

l,i = net � y0
l,i

= bi +
∑

j∈P (i)

wijxl−1,j (10)

x0
l,i = xl,i = σ(net � x0

l,i) = σ(y0
l,i) (11)

2.5.2 Unit in the δ Net (FP)

The input and output to the σ(m)
l,i unit are given by the

following equations. σ(m) here is the m-th derivative of
the function σ. Note that a σ

(m)
l,i unit has y0

l,i for its
input as a σ unit.

net � σ
(m)
l,i = y0

l,i (12)

σ
(m)
l,i = σ(m)(y0

l,i) (13)

The input and output for yδ
l,i unit are the same

and given by the following equations.

yδ
l,i = net � yδ

l,i =
∑

j

wi,jx
δ
l−1,j (14)

The input and output of xδ
l,i unit are the same and

given by the following equations. Units of this kind are
Sigma-Pi units described in [7].

xδ
l,i = net � xδ

l,i =
∂N(δ)

∂δx
(x0

l,i)

=
∑

(dδ,∆,∆)∈ V (δ)

dδ,∆


σ

(T (∆))
l,i

∏
(c,δ′)∈∆

(
yδ′

l,i

)c



(15)

The product about ∆ will be kept as p∆
l,i.

p∆
l,i =

∏
(c,δ′)∈∆

(
yδ′

l,i

)c

(16)

This is not essential for the algorithm, but it affects the
efficiency of the implementation of the algorithm.

proof of the last equation in (15)

If we set f(xI) = y0
l,i where y

0
l,i is being seen as a func-

tion of xI , then ∆(f) equals to the Π product in equa-
tion (15), which is p∆

l,i. Since x
0
l,i = σ(y0

l,i) = σ(f(xI)),
essentially the same mechanism applies to both equa-
tions (15) and (8) by the correspondence of the σ func-
tion in (15) to the exponential function e in (8). There-
fore dδ,∆ in equation (15) is exactly the same as the one
in equation (8). ✷

2.6 Error Function

We define the error function by the following equation.

E =
∑
δ>=0

αδEδ (17)

Here αδ is a learning constant corresponding to δ.
For the set of patterns (Ip,Op) where p = I0, Eδ

is calculated as follows. First each Ip is fed into the
network, and propagated forward through the network.
Then using the output of network and the given output
Op that is sometimes called teacher signal, Eδ is given
by the following equation. †

Eδ =
1
2

∑
p

(
Oδ

p − xδ
p

)2
(18)

Usual back propagation algorithm does not include
the learning constant in the energy, but the constant is
used to scale the update values for weights [7]. Our al-
gorithm includes the learning constants in the energy.
This is because each δ has an individual learning con-
stant. If we take the former way †† , update values for

†Only the subscript for the pattern is given for x in order
to avoid too complex equations.

††That is to scale the update values by learning constants.
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each δ have to be managed and more memory space is
necessary. It is unpractical for the higher order differen-
tials. So the following algorithm is designed to include
the learning constants before the ε’s are given to the
units in output layer.

2.7 Back Propagation

Using E defined in section 2.6, wi,j is updated as fol-
lows.

∆wi,j = − ∂E

∂wi,j
(19)

First we are going to show the back propagation al-
gorithm of ε for each type of units. Then we will show
the update rules for the weights and thresholds. In the
following equations, we assume the case of one pattern
and omit the subscript of the pattern.

ε’s which are propagated backward through the
network correspond to what are propagated in ordinary
back propagation. That is “the differential of the error
function with respect to the input to the unit.” We
denote that value by ε � u for the unit u. Therefore the
definition of ε � u is given by the following equation for
the error function E.

ε � u = − ∂E

∂net � u
(20)

The following sections give the back propagation
algorithms for the types of units. This algorithm is for
a set of one pattern (Ip,Op), but it is easily extendable
to the case of sets of multiple patterns by summation.
It is assumed that the input Ip is fed to the network,
and forward propagated through the network.

2.7.1 Units in the output layer (BP)

ε’s for the units xδ’s in the output layer † are given as
follows. (In the following equations subscripts for the
layer and the unit are omitted to avoid too complex
equations.)

First ε � x0, which is ε for the units in the output
layer of value net, is given by the following equation.

ε � x0 = − ∂E

∂net � x0

= α0
(
O0

p − x0
p

)
σ(1)(net) (21)

In cases of δ > 0, it is given by the following equa-
tion.

ε � xδ = − ∂E

∂net � xδ
= αδ

(
Oδ

p − xδ
p

)
(22)

†If the network does not have the layer structure, the
output layer is the set of units whose outputs are inter-
preted as parts of the output of the network. For the δ net,
only xδ units are included. yδ units and σ(m) units are not
included.

2.7.2 Units in the Value Net (BP)

For the units in the value net other than in the output
layer, the back propagation algorithm is essentially the
ordinary back propagation algorithm with ε of σ unit.

ε � x0
l−1,i = − ∂E

∂net � x0
l−1,i

=
∑

j

ε � y0
l,j wj,i σ

(1)
l−1,i (23)

ε � y0
l−1,i = − ∂E

∂net � y0
l−1,i

= ε � x0
l−1,i +

∑
m>=1

ε � σ
(m)
l−1,i (24)

2.7.3 Units in the δ Net (BP)

For the xδ
l−1,j units in δ net other than in the output

layer, the back propagation algorithm will be given by
the following equation.

ε � xδ
l−1,i = − ∂E

∂netδl−1,i

=
∑

j

ε � yδ
l,j wj,i (25)

For the σ(m)
l,i units in δ net, the back propagation

algorithm will be given by the following equation.

ε � σ
(m)
l,i = − ∂E

∂net � σ
(m)
l,i

σ
(m+1)
l,i

=
∑

δ:N(δ)>=m

ε � xδ
l,i

×

 ∑

∆:T (∆)=m ∧ Sum(∆)=δ

dδ,∆ p∆
l,i




×σ
(m+1)
l,i (26)

For the yδ
l,i units in δ net, the back propagation al-

gorithm will be given by the following equation. (Note
that ∂netδ

′
l,i/∂net � y

δ
l,i = ∂xδ′

l,i/∂y
δ
l,i.)

ε � yδ
l,i = − ∂E

∂net � yδ
l,i

=
∑

δ′ :δ′>=δ

ε � xδ′
l,i

∑
∆:Sum(∆)=δ′∧∃c (c,δ)∈∆

dδ′,∆σ
(T (∆))
l,i c (yδ

l,i)
c−1


 ∏

(c′′,δ′′)∈(∆−{(c,δ)})
(yδ′′

l,i )
c′′


 (27)

These algorithms summarized for δ > 0 and m >= 1
as follows.

ε � xδ
l−1,i =

∑
j

ε � yδ
l,j wj,i (28)
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ε � σ
(m)
l,i =

∑
δ:N(δ)>=m

ε � xδ
l,i


 ∑

∆:T (∆)=m ∧ Sum(∆)=δ

dδ,∆ p∆
l,i




σ
(m+1)
l,i (29)

ε � yδ
l,i =

∑
δ′ :δ′>=δ

ε � xδ′
l,i

∑
∆:Sum(∆)=δ′∧∃c (c,δ)∈∆

dδ′,∆ σ
(T (∆))
l,i

c (yδ
l,i)

c−1


 ∏

(c′′,δ′′)∈(∆−{(c,δ)})
(yδ′′

l,i )
c′′



(30)

2.8 Update rules for weights

In this section, we will show the update rules for weights
and thresholds. The same weight shows up in the value
net and in the corresponding places of the δ net in fig-
ure 1. Therefore the update value for the weight should
be the sum of update values for those corresponding
weights. Using equations for ε obtained in section 2.7,
the update rule for the weight wi,j is as follows.

∆wi,j = − ∂E

∂wi,j
= −

∑
δ>=0

∂E

∂net � yδ
l,i

∂net � yδ
l,i

∂wi,j

=
∑
δ>=0

ε � yδ
l,i x

δ
l−1,j (31)

Note that weight updates due to σ(m) units (m >=
1) are included in ε � y0

l,i.
Thresholds bi’s † are special kinds of weights,

which appear only in the value net. Therefore the up-
date rule for the threshold is as follows.

∆bi = −∂E

∂bi
= ε � y0

l,i (32)

Note that bias updates due to σ(m) units (m >= 1)
are also included in ε � y0

l,i.
In cases we use momentum (c.f. [7]) in the learning

algorithm, the update rules are as follows. ( Here ∆̃wi,j

and ∆̃bi stand for previous update values.)

∆wi,j =
∑
δ>=0

ε � yδ
l,i x

δ
l−1,j + β ∆̃wi,j (33)

∆bi = ε � y0
l,i + β ∆̃bi (34)

†Thresholds are sometimes called biases.

3. Correspondence to Tangent Prop in First
Order Cases

For the first order cases, the following correspondences
will establish the equivalence between tangent prop as
described in [8] and the algorithm proposed here. The
left hand side item of tangent prop of the arrow cor-
responds to the right hand side item of the algorithm
proposed here.

• network → value net

• al
i → y0

l,i, x
l
i → x0

l,i, b
l
i → − ∂E

∂x0
l,i

, yl
i → ε � y0

l,i

• Jacobian network → δ net

• αl
i → yδ

l,i, ξ
l
i → xδ

l,i, β
l
i → ε � xδ

l,i, ψ
l
i → ε � yδ

l,i

4. Experiments

In this section, we give results of preliminary experi-
ments on this algorithm and some observations based
on the results.

The algorithm proposed in section 2 is imple-
mented for differential data of an arbitrary order by
coding it in the form of C++ program. The C++ im-
plementation is checked numerically against the neural
network model created in Mathematica [10]. This C++
implementation is used to carry out the experiments de-
scribed in this section.

We use the following sine function as a target
function, which ranges [0.1, 0.9] for the domain of
[0.0, 1.0].

f(x) = 0.4 sin(2πx) + 0.5 (35)

We carried out three experiments to compare the
proposed algorithm with the standard back propaga-
tion (BP). First we give the common settings for all
three cases and then we give the individual settings for
each case.

The neural network and its initial state are the
same for all cases. We use a neural network with one
input unit, 16 hidden units, and one output unit. The
weights and biases are initialized with the values chosen
randomly from the interval [−0.01, 0.01]. The momen-
tum was set for 0.1.

Here follows individual settings.

(1) Case 1 (Up to second order with three data
points):

We trained the network with the algorithm proposed in
this paper up to the second order. Learning constants
are 1.0, 0.01, and 0.001 for value data, first order dif-
ferential data, and second order differential data, re-
spectively. Three training data points were randomly
selected from the interval [0, 1]. The neural networks
are trained for the 1,000,000 learning epochs on the
training data up to second order from the three train-
ing data points.
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(2) Case 2 (Standard BP with three data points):

We trained the network with the standard back prop-
agation algorithm. Learning constants is 1.0 for value
data. Three training data points are the same ones
as in Case 1. The neural networks are trained for the
10,000 learning epochs on the value data from the three
training data points.

(3) Case 3 (Standard BP with nine data points):

We trained the network with the standard back prop-
agation algorithm. Learning constants is 1.0 for value
data. Nine training data points, 0.1, 0.2, ..., 0.9, were
selected uniformly from the interval [0, 1]. The neural
networks are trained for the 1,000,000 learning epochs
on the value data from the nine training data points.

We carry out the experiment in Case 2 to see how
well the standard back propagation algorithm performs
if the number of data points is the same as in Case 1.

We carry out the experiment in Case 3 to see how
well the standard back propagation algorithm performs
if the number of data given to the neural network is
the same as in Case 1. Since there are value, first or-
der differential, and second order differential data for
each data point, there is three times more data for each
data point in Case 1 than the standard back propaga-
tion cases. Therefore nine data points are selected for
Case 3.

Figures 2, 3, 4, show the value, the first order, and
the second order outputs of the trained neural networks
for three cases. Naturally the first and the second order
outputs are much closer to those of target function in
Case 1 than Case 2 and Case 3 on the training data
points.

Table 1 is given to see the overall performance of
the trained neural networks on the interval [0, 1]. ‖ ‖2,0,
‖ ‖2,1, and ‖ ‖2,2 distances on the interval [0, 1] between
the target function and the trained neural network are
given in the table for each case. These distances are
given by the following equations where n(x) is the func-
tion defined by the neural network.

‖f − n‖2,l =

{∫ 1

0

(
dlf(x)
dxl

− dln(x)
dxl

)2
}1/2

(36)

Figure 5 gives learning curves for all the cases. The
graphs show the changes of errors for Case 1, Case 2,
and Case 3 from the top respectively.

We describe several observations obtained from
those experiments.

First of all, the trained neural network in Case 1
succeeded to learn to approximate all the training data
up to second order on the training data points. This
also supports the correctness of the proposed algorithm
along with the check by Mathematica.

In the table 1, the ‖ ‖2,0 distance from the target
function of the neural network in Case 1 happens to be
smaller than the one in Case 2. This might suggests

‖ ‖2,0 ‖ ‖2,1 ‖ ‖2,2

Case 1 0.0731 0.828 12.4
Case 2 0.171 1.467 8.84
Case 3 0.0448 0.909 13.6

Table 1 ‖ ‖2,0, ‖ ‖2,1, and ‖ ‖2,2 distances: ‖ ‖2,0, ‖ ‖2,1, and
‖ ‖2,2 distances on the interval [0, 1] between the target function
and the trained neural network are given for each case.

that the neural networks learning differential data can
give better overall performance over the domain than
the standard back propagation neural networks if the
constraints on differential data are given along with the
constraints on value data.

On the other hand, the ‖ ‖2,2 distance from the
target function of the neural network in Case 1 hap-
pens to be larger than the one in Case 2. This was
quite unexpected. The reason behind it may be that
learning on both value and first order differential data
has affected learning on second-order differential data
in Case 1.

The neural network in Case 3 performs better than
the network in Case 1 in terms of the ‖ ‖2,0 distance
probably because its training data in Case 3 consists
only of value data.

Another observation is that it took fairly large
learning epochs in Case 3, which are comparable to
those in Case 1. We expected to have large learning
epochs for Case 1 since learning differential data will
need subtle adjustments, but not for Case 3 since there
is only training value data to learn. This might sug-
gest that the number of learning epochs needed does
not depend on the differential order of the data but on
the size of the training data. †

For the above observations, we need to carry out
analyses and further experiments to confirm them.

5. Conclusion

This paper introduced a correct algorithm for multi-
layer neural networks to learn differential data of arbi-
trary differential order. Even though the algorithm is
complex, this enables to utilize knowledge given in the
forms of constraints on differential data along with con-
straints on value data. We also gave preliminary exper-
iment results comparing our algorithm with standard
back propagation, and observations based on them.

It is still early to give general conclusions from
those experiments of a small number, but the results
seems to suggest the possibilities of the proposed algo-
rithm as an adequate learning algorithm for the cases
described in the introduction.

†The actual learning time also depends on the time
needed for each epoch, which is longer for higher differential
orders even if the size of training data is the same. Never-
theless it is an interesting point to consider theoretically.
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Fig. 2 [Case 1] Outputs of the trained neural network: The
graphs show the value, first order, and second order outputs of
the neural network in Case 1 from the top respectively. The solid
lines show the outputs of the trained neural network in Case 1
after 1,000,000 learning epochs. The dotted line is the output of
the target function. The dots represent the three training data
points.

Our future plans include carrying out analyses and
further experiments on neural networks learning dif-
ferential data to confirm the obtained observations, to
identify convergence properties, and to establish utili-
ties of the proposed algorithm.
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Fig. 3 [Case 2] Outputs of the trained neural network: The
graphs show the value, first order, and second order outputs of
the neural network in Case 2 from the top respectively. The solid
lines show the outputs of the trained neural network in Case 2
after 10,000 learning epochs. The dotted line is the output of
the target function. The dots represent the three training data
points.
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