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Abstract

Learning systems that learn from previous experiences and/or provided exam-
ples of appropriate behaviors, allow the people to specify what the systems
should do for each case, not how systems should act for each step. That eases
system users’ burdens to a great extent.

It is essential in efficient and accurate learning for supervised learning sys-
tems such as neural networks to be able to utilize knowledge in the forms of
such as logical expressions, probability distributions, and constraint on differ-
ential data along with provided desirable input and output pairs.

Neural networks, which can learn constraint on differential data, have al-
ready been applied to pattern recognition and differential equations. Other
applications such as robotics have been suggested as applications of neural net-
works learning differential data.

In this dissertation, we investigate the extended framework introduce con-
straints on differential data into neural networks’ learning. We also investigate
other items that form the foundations for the applications of neural networks
learning differential data.

First, new and very general architecture and an algorithm are introduced
for multilayer perceptrons to learn differential data The algorithm is applicable
to learning differential data of orders not only first but also higher than first
and completely localized to each unit in the multilayer perceptrons like the back
propagation algorithm.

Then the architecture and the algorithm are implemented as computer pro-
grams. This required high programming skills and great amount of care. The
main module is programmed in C++.

The implementation is used to conduct experiments among others to show
convergence of neural networks with differential data of up to third order.

Along with the architecture and the algorithm, we give analyses of neu-
ral networks learning differential data such as comparison with extra pattern
scheme, how learnings work, sample complexity, effects of irrelevant features,
and noise robustness.

A new application of neural networks learning differential data to continu-
ous action generation in reinforcement learning and its experiments using the
implementation are described. The problem is reduced to realization of a ran-
dom vector generator for a given probability distribution, which corresponds to
solving a differential equation of first order.

In addition to the above application to reinforcement learning, two other
possible applications of neural networks learning differential data are proposed.
Those are differential equations and simulation of human arm. For differential
equations, we propose a very general framework, which unifies differential equa-
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tions, boundary conditions, and other constraints. For the simulation, we pro-
pose a natural neural network implementation of the minimum-torque-change
model.

Finally, we present results on higher order extensions to radial basis func-
tion (RBF) networks of minimizing solutions with differential error terms, best
approximation property of the above solutions, and a proof of C! denseness of
RBF networks.

Through these detailed accounts of architecture, an algorithm, an implemen-
tation, analyses, and applications, this dissertation as a whole lays the founda-
tions for applications of neural networks learning differential data as learning
systems and will help promote their further applications.
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Chapter 1

Introduction

1.1 Learning Systems

Learning systems will affect all mankind greatly in the future. Learning systems
allow the people to specify what the systems should do for each case, not how
systems should act for each step. That eases system users’ burdens to a great
extent.

We define a “learning system” as a system that can decide in a reasonable
way what to do in a particular situation from previous experiences and/or pro-
vided examples of appropriate behaviors even though the situation may not be
experienced by the system before.

Systems that work only as ordered and learning systems (even those systems
that learn partly) are completely different existences. Methods to give orders to
systems without learning capabilities, such as programming languages, scripting
languages, graphical user interfaces (GUIs), and aural interfaces, will be sub-
stantially more sophisticated in the future. But, however refined those methods
may become, systems without learning capabilities burden us with tasks of
specifying how systems should act for each step. It also requires system users to
understand how the system works, which is not essential to achieve objectives.

On the other hand, it is only necessary to indicate what the systems should
do for each case with learning systems. Then learning systems learn to adjust,
configure, and/or program themselves appropriately. This is especially useful
when the systems or target domains of the systems are so complex, huge, and/or
rapidly changing that human beings are just not able to fathom them. For
example, Internet is one of such domains. Learning systems will be indispensable
for Internet users in the future.

Learning systems relieve the people from complex and tedious tasks adjust-
ing, configuring, and programming systems. It will also be possible by learning
for learning systems to be able to handle gradually more abstract specifications
of goals.

Learning systems need learning algorithms. Learning algorithms (and frame-
works) include clustering, reinforcement learning, many logic-based systems,
neural networks, fuzzy systems, genetic algorithms, etc.

One of the categorizations of those learning algorithms is that of unsuper-
vised /supervised learning. We focus our discussion on supervised learning from
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here on.

Supervised learning is learning from provided examples. Examples often
take the form of desired input and output pairs in supervised learning. Being
presented desired input and output pairs as examples, learning systems learn the
relationship (or the function) between input and output from those examples.
For example, pairs of sensory data as input and desired motor control signals as
output are given to a learning system so that it learns to output the appropriate
motor control signals for individual sensory data.

For learning systems, the problem is not about where the input data is
present, but where the input data is missing. Usually supervised learning is ill
posed problem. If there are no specifications, the learning system will interpo-
late or extrapolate the output data according to the internal constraints of the
learning systems.

There are forms of knowledge that can be provided to the learning systems
other than desired input and output pairs. Such knowledge is the constraints of
the domain or how the world under consideration is (or seems to be) constrained.
Human beings also use these kinds of knowledge to learn or to recognize. Ac-
tually these kinds of knowledge are essential for human beings to learn or to
recognize since learning and recognition in real world are always ill posed prob-
lems. These kinds of knowledge might sometimes be called biases and it happens
in some cases that they work against learning and recognition processes. Even
s0, these kinds of knowledge help efficient processes of learning for learning sys-
tems in many cases. Especially for limited domains where exact constraints are
known, it should be always right to count on them.

The forms of these kinds of knowledge include the followings:

e Knowledge in the logical forms

— Rules and facts asserted in logical expressions

— Fuzzy rules
e Probability distribution
— Markov Random Field
e Constraints on differential data

— Differential equations

— Constraints on values calculated from differential data

If these kinds of knowledge can be combined in supervised learning, learning
process will be accelerated and the result will be more accurate in most of the
cases.

For example, fuzzy rules are incorporated into the neural networks by prewiring
the neural networks to be used for giving better initial states and limiting the
search space of the neural networks [21, 27, 28].

Introducing knowledge represented by probability distribution is also very
useful. Simulated annealing is one of the popular methods to mix this kind
of knowledge as probability distributions in optimization problems of target
functions. Simulated annealing is applied to many applications in the area
of Computer Aided Design (CAD) [15] and simulated annealing with Markov
Random Field (MRF) has been applied to pattern restoration [7] successfully.
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Constraints on differential data are another main sources of knowledge,
which can be utilized for learning systems. Physical values often satisfy dif-
ferential equations.

Other forms of constraints on differential data are used for learning systems.
Those constraints include that certain directional derivatives have to be zeros
for outputs of pattern recognizers [36]. In robotics, some of constraints take
forms of minimization of integral of squared differential value [11, 38§].

In this dissertation, we investigate the framework to introduce constraints
on differential data into neural networks as learning systems.

1.2 Applications

There are many possible applications where constraints on differential data are
available along with desired input and output pairs. Neural networks, which
learn differential data, are very apt learning system for such applications.

Examples of such applications are given in [36] and [13].

Simard et al. [36] described how the invariance of pattern recognition with
respect to transformations such as translations, rotations, and scalings, can
be interpreted as constraints on first order differential data. The output of the
neural network as a pattern recognizer should stay same for such transformations
of the input. That constraint is interpreted as that directional derivatives of the
output with respect to the directions of transformations have to be zero.

Hornik et al. [13] identified several areas of applications requiring approx-
imation to an unknown mapping and its derivatives, such as robot learning,
deterministic chaos, economics, and sensitivity analyses.

There are also researches [17, 4, 39, 16] on the application of neural net-
works to solving differential equations. Neural networks are applied to first and
second order differential equations such as a linear Poisson equation, one of ther-
mal conduction with non-linear heat generation, and one in plasma equilibrium
problem.

1.3 History of Related Research

In this section, we give a brief history of research on neural networks learning
differential data.

In the research history of neural networks, there first appeared existence
theorems of a multilayer perceptron that approximates a given function. Fu-
nahashi [5] showed that there is a three-layered perceptron approximating any
C° function with any precision, while Hornik et al. [13] showed there is also a
perceptron, which approximates any C™ function with respect to C™ norm. On
the other hand, constraining neural networks by using a training set of value
data was justified by Gallant and White [6] who showed that a sequence of
perceptron-produced functions which gives the least square error for randomly
selected training samples, converges almost surely to a given function and its
derivatives. These theorems, assuring the existence of convergent sequence of
neural networks, give an important base toward realization of neural networks
learning differential data.
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However, these theorems are not very useful from a practical point of view,
firstly because the number of training data required in the theorem would of-
ten be unrealistically large to realize, and secondly because practical learning
methods do not necessarily give the minima for the least square errors. Instead,
if available, we should employ differential data themselves as learning data in
constraining neural networks. The constraining algorithm for neural networks
learning first order differential data was first proposed under the name of ‘tan-
gent prop’ by Simard et al. [36] who applied it to a pattern recognition problem.

In this dissertation, we propose an algorithm of multilayer neural network
learning differential data of arbitrary order [24, 23]. The algorithm employs
the back propagation [34] processes for derivatives of the target function up to
the required order together with back propagation for the target function itself.
The algorithm is rather simple for the first order differential data, but becomes
rapidly complex as the differential order increases. Here in this dissertation, we
show that the proposed algorithm is possible to implement for differential data
of an arbitrary order by coding it in the form of C++ program.

Here we also discuss an introduction of differential data into radial basis
function (RBF) networks. RBF was first discussed by Poggio [31] as a basis of
smooth approximation to a function by solving a variational problem of least
square error with a smoothing term. Park and Sandberg [29, 30] proved that
RBF networks are dense in LP(1 < p < o0), and Chen and Chen [2] showed that
a necessary and sufficient condition for a function of one variable to be qualified
as a mother function (activation function) is that the function is not an even
polynomial. Further, in 1998, Li [18] proved that RBF networks are dense in C™
space. In this dissertation, we first give an RBF network by solving a variational
problem with a differential error terms, and then prove its denseness in C" in
an alternative way to that of Li.

1.4 Objectives and Contents of this Dissertation

In this section, we describe the objectives and contents of this dissertation.

As identified in Section 1.3 there is still a gap between previous research
conducted on neural networks learning differential data and practical applica-
tions of neural networks learning differential data when neural networks learning
differential data are used as learning systems which can incorporate constraints
on differential data in learning as described in Section 1.1. The main gap is the
algorithm and the implementation of neural networks learning differential data
of arbitrary order. Therefore the objectives of this dissertation are set to filling
this gap and conducting analyses and experiments on neural networks learning
differential data using the implementation in order to show the possibilities of
practical applications.

On consideration of the above objectives, we have identified the domain of
research as follows:

Algorithm for neural networks to learn differential data of arbitrary order

e Implementation of the algorithm

Experiments to show that it really converges

Analyses on neural networks learning differential data
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e Application of the algorithm and the implementation

We have derived an algorithm for neural networks to learn differential data
of arbitrary order. This algorithm has features as follows:

e The algorithm can use differential data of arbitrary order.

e The algorithm needs an auxiliary network to propagate backward the error
originating from differential data.

e The algorithm is completely local as the standard back propagation algo-
rithm [34]. This is a very important trait of the algorithm since this allows
the algorithm deal with neural networks of general structure. For exam-
ple, the algorithm applies to neural networks without any layer structure
or fully connected.

e The algorithm allows each unit has any sigmoid function.

Above neural networks and the algorithm learning differential data are given
substances as computer programs. It took a long time (actually many years)
to implement them right. We could not realize it during the implementation,
but now with hindsight we know that they are very complex and difficult to
implement. We believe there is no other implementation of this kind elsewhere.

Then we have conducted the experiments to see the neural networks really
converge for second and third order differential data. It sounds simple enough.
However it has been a very difficult task since no one has ever tried it yet. When
the neural networks do not seem to converge, it is very difficult to tell what is
wrong. There are possibilities of mistakes in the algorithm, the programs, or the
parameters. Maybe the neural network takes much longer time than expected to
converge or the network simply does not converge on the particular differential
data. Therefore we believe it is a very important step toward the practical
applications of neural networks learning differential data that we have shown
the neural networks have actually converged on differential data in this paper.

We have also conducted following analyses on neural networks learning dif-
ferential data mainly in the first order cases to reveal their characteristics.

e Comparison with the standard back propagation algorithm with more data

How learnings work

Sample complexity
e Effect of irrelevant features
e Noise robustness

As practical applications of neural networks learning differential data, we
have applied them to solving differential equations in reinforcement learning
framework. There are already several works [17, 4, 39, 16] on the application of
neural networks to solving differential equations.

Lee and Kang [17] solve certain types of first order ordinary differential equa-
tions by using Hopfield-type neural networks to minimize the finite difference
equations.
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In [4, 39, 16], differential equations along with boundary conditions are
turned into minimization problems. Those minimization problems are solved
using neural networks with global minimization procedures such as quasi New-
ton gradient descent algorithm.

We use essentially the same framework as one in [4, 39, 16], of mapping
differential equations, boundary conditions, and any other conditions into min-
imization problems by neural networks. But we employ our implementation of
neural networks learning differential data for the minimization procedure differ-
ent from the previous researches.

Our algorithm is completely localized to each unit (neuron) and it leaves
possibilities of parallel implementations for efficient executions, while global
minimization procedures are very difficult to implement in parallel ways. It is
also very difficult to apply global minimization procedures for adaptive prob-
lems. In many learning problems in robotics and others, what has to be learned,
changes dynamically. In the problem of continuous action generation in rein-
forcement learning described in Chapter 6, the probability distribution given in
the output space changes as the learning proceeds and so does the differential
equation for the neural network to satisfy. In such adaptive cases, our algorithm
provides more gradual way of learning than global minimization procedures.

The difficulty with applications of neural networks learning differential data
to differential equations is that of moving targets. To minimize the square error
of differential equations, neural networks need to propagate backward the errors,
which depend on the outputs of the neural network. That is so even for linear
differential equations. That means neural networks need to learn or to adapt
to something like moving targets. This is totally different situation from the
standard back propagation algorithm where the training data is fixed. Therefore
there is difficulty of moving targets added to learning differential data.

In the application of neural networks learning differential data to differential
equations that appeared in reinforcement learning (See [37] for reinforcement
learning), we use neural networks to create random vector generators that re-
alize continuous action generation for any probability distribution. The neural
networks have learned differential data derived from the differential equation
quite successfully and learned to satisfy the differential equation approximately.

In addition to the above application to the problem in reinforcement learn-
ing, two other possible applications of neural networks learning differential data
are proposed. Those are differential equations and simulation of human arm.
For differential equations, we propose a very general framework that unifies
differential equations, boundary conditions, and other constraints. For the sim-
ulation, we propose a natural implementation of the minimum-torque-change
model.

Finally there are items explored in this dissertation on radial basis function
(RBF) networks with utilizing differential data in mind. Those items include
the followings:

e Minimizing solutions for the cases with differential error terms
e Best approximation property of the above solutions

e C' denseness of RBF networks
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1.5 Structure of this Dissertation

This section provides the structure of this dissertation.

Chapter 2 reviews the theoretical framework for neural networks mainly
about multilayer perceptrons and their learning algorithm, back propagation.

Chapter 3 describes the structure and the algorithm for the neural networks
learning differential data.

Chapter 4 gives the outline of implementation and results of experiments
on the neural networks learning differential data. Results of many illustrative
experiments along with experiments with up to third order differential data,
and experiments on a two-dimensional function are reported.

Chapter 5 presents analyses of neural networks learning differential data
mainly in the first order cases. Analyses include comparison with extra pattern
scheme, how learnings work, sample complexity, effect of irrelevant features, and
noise robustness.

Chapter 6 describes an application of neural networks learning differential
data to continuous action generation in reinforcement learning. The chapter de-
scribes the problem of continuous action generation in reinforcement learning,
gives formalization for the problem, and illustrates the results of the experi-
ments.

Chapter 7 proposes two other possible applications of neural networks learn-
ing differential data, differential equations and simulation of human arm.

Chapter 8 describes higher order extensions to radial basis function (RBF).
Items explored in the chapter include minimizing solutions for the cases with
differential error terms, best approximation property of the above solutions, and
C' denseness of RBF networks.

Chapter 9 concludes this dissertation with a summary of the contributions,
a discussion of the limitations, and suggestions for future work.






Chapter 2

Multilayer Perceptron

In this chapter, we introduce briefly neural networks in general, describe the
multilayer perceptrons, and explain their learning method, back propagation.

2.1 Neural Networks

In this section, we give a very brief introduction of neural networks in general.
The content of this section is largely based on [1].

Neural networks can be very loosely defined as follows (This is an adaptation
of the definition of neural network information processing in [1]).

Inspired by neural networks of higher animals, a neural network is
a network capable of information processing, in which a large num-
ber of relatively simple information processing units are connected
together and in which these units communicate with each other by
relatively simple signals.

Therefore the important components of neural networks are “unit” and “con-
nection.” ! The neural networks can be categorized in two ways: how the units
are connected and the type of information processing in the unit.

From the point of how the units are connected, the neural networks are
categorized as follows: 2

e Layered network
e Mutually connected network

A layered network is a network, which has a layered structure of units with
layers ordered from the input layer to the output layer. A Unit in a layer
is only connected to the units in the next higher layer. Radial Basis Function
(RBF) networks investigated in Chapter 8 are layered networks with three layers.
Multilayer perceptrons in general fall in this category. 3

'Rumelhart et al. [33] give more detailed, eight major aspects of parallel distributed
processing model.

2Though this distinction is useful, the distinction has been blurred recently. We include
the categorization for general understanding.

3We give a more general definition for multilayer perceptrons in Section 2.2.
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A mutually connected network is a network, which allows connections be-
tween any two units for both directions. Hopfield networks and Boltzmann
machines explained in the following use networks of this type.

From the point of the type of information processing in the unit, the neural
networks are categorized as follows: 4

e Hopfield networks
e Boltzmann machine
e Back propagation

A Hopfield network [12] use a mutually connect network with symmetri-
cal weights. Hopfield networks are used for associative memories and solving
optimization problems.

A “Boltzmann machine” [10] is essentially a stochastic version of Hopfield
network. A Boltzmann machine can also learn the probabilities of states of the
environment and can simulate the environment later.

Back propagation is a learning algorithm (procedure) proposed for multilayer
networks. We explain the algorithm in Section 2.3.

After this section, we use the word, “neural network” to mean a multilayer
perceptron without any confusion since we do not handle the other types of the
networks hereafter.

2.2  Structure of Multilayer Perceptrons

In this section, we define and describe the structure of multilayer perceptrons.
First, we define a “unit,” which is also called a “neuron.”

Definition 2.1 A unit has more than or equal to one inputs and a single output.
The weighted sum of the inputs is combined with a bias and then is operated on
by a sigmoid function to produce the output. Let n be the number of inputs to
the unit, o be the output, x;’s be the inputs, w;’s be the weights, b be the bias,
and o be the sigmoid function. The output of the unit is given as follows.

0—0<§:wi xi—i—b) (2.1)

Here n is a positive integer, o, x;’s, w;’s, and b are real numbers, and the
sigmoid function, o is a one-dimensional non-linear monotonic differentiable
function.

Even though any function can serve as a sigmoid function for a unit as long
as it is one-dimensional, non-linear, monotonic, and differentiable, the follow-
ing function given by Equation (2.1) is used in our implementation of neural
networks and throughout the experiments described in this dissertation.

1

o)==

(2.2)

The graph of this function is given by Figure 2.1.

4Only major categories are listed.
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0.4

-7.5 -5 -2.5 0 2.5 5 7.5 10

Figure 2.1: Sigmoid Function: The figure shows the sigmoid function, o(z) =
1/(1+e™*), used in the implementation and the experiments.

Sigma-Pi Unit There is another type of units called “Sigma-Pi units.” (See
[33] and [34].) Even though units of this type do not constitute multilayer
perceptrons, we use those units in the construction of our ¢ nets. (See Section
3.5.2) The output of a unit of this type is given as follows and the units are
named after this form, where {{ix|k = 1,...,1;}|i = 1,...,m} gives a partitioning
of n inputs.

m l;
0= U(Z w; szk) (2.3)
i=1 k

We give our definition of a multilayer perceptron as follows.

Definition 2.2 A multilayer perceptron is a network of units defined in Def-
inition 2.1, where a unit receives outputs of other units or the input from the
environment as its inputs, and where a unit outputs to other units or to the
environment.

A wunit, which receives the input from the environment, is called an “input
unit.” A unit, which outputs to the environment, is called an “output unit.” A
multilayer perceptron must have at least one input unit and one output unit.

Here the “environment” means the outside of the network. We decided to allow

any connection in the network. Only restriction is that the network is connected
to the environment (i.e. outside) in both ways. We do not assume any layer
structure for a multilayer perceptron. ® Units in the network can have different

5We understand that this is a little misleading. But we think that using a different name
is more confusing.
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sigmoid functions. Back propagation is applicable to multilayer perceptrons of
this definition and so is the algorithm for neural networks learning differential
data proposed in Chapter 3.

Though we have given a very general definition of a multilayer perceptron,
many of typical multilayer networks and t he networks used in the implementa-
tion and the experiments have the structure like the one depicted in Figure 2.2.
This kind of the networks is actually a layered network. (See Section 2.1) The
input layer is the layer, which consists entirely of the input units. The output
layer is the layer, which consists entirely of the output units. Hidden layers
are the layers, which consists entirely of the units without connections to the
environment. A hidden layer is sometimes called a middle layer.

input layer

hidden layer

output layer

Figure 2.2: Structure of Multilayer Perceptron: The structure of a typical mul-
tilayer perceptron with three layers is depicted.
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2.3 Back Propagation for Multilayer Perceptron

In this section, we explain briefly back propagation, a learning algorithm for
multilayer perceptrons. See [34] for more details.

There are two kinds of information processing performed in multilayer per-
ceptrons. First one is the forward propagation as defined in Definition 2.1, of
the input by the environment through the network from the input units to the
output units. The other one is the learning algorithm, which consists of the
back propagation of the errors by the environment through the network from
the output units to the input units, and weight and bias updates.

The latter is called “back propagation” as a whole. The purpose of back
propagation is to adjust the internal state (weights and biases) of the multilayer
perceptron so that the multilayer perceptron produces the desired output for
the specified input.

In order to realize this, the following error function (, which is sometimes
called “energy function,”) E is defined for desired input and output pairs {{Ip, Op},},
6 where n is the function defined by the multilayer perceptron.

=3 2(0, ~ n(,))? (24)

p

For each pair, the multilayer perceptron is made to propagate the input I,
forward, then the squared distance between the output of the network n(I,)
and the desired output is calculated. The squared distances are summed for all
the pairs and divided by 2 to produce the error function. If the error function
is 0, it means that the multilayer network produces exactly the desired output
for each input.

The back propagation algorithm is essentially a gradient descent procedure
with respect to this error function. The weights (and the biases) are there-
fore updated as follows, where « is some positive constant called the “learning
constant.”

OF

Aw = —o (2.5)

Furthermore a momentum term by the past weight update value Aw is added
as follows to avoid oscillation for a practical purpose of making rapid learning
possible [34],

oF ~
Aw = ag + fAw (2.6)
where (3 is a positive constant less than 1.

The back propagation algorithm is used for calculation of § 7, the value
assigned to each unit. In back propagation, this ¢ is propagated backward from
the unit to those units, which output to that unit. Actually back propagation
is embodiment of repeated applications of the chain rule for partial derivatives.

6 A desired input and output pair, an input, and an output are sometimes called a pattern,
an input pattern, and an output pattern.

"This is why back propagation is sometimes called generalized delta rule. The delta rule
itself dates back to the learning algorithm for Perceptron [40].
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The details of the algorithm and its derivation is omitted here since the
algorithm is the restriction on the value net of the algorithm for neural network
learning differential data proposed in Chapter 3.

What is important is that this algorithm is completely localized to each
unit. A weight update can be calculated from § and the output of the unit
involved. This is the reason why back propagation is applicable not only to
single-layer, but also to multilayer perceptrons and such networks even without
layer structures.



Chapter 3

Algorithm for Learning
Differential Data

In this chapter, we describe the architecture of an extended multilayer percep-
tron and its algorithm to learn differential data. We also give the correspondence
between the proposed algorithm and tangent prop in first order case at the end
of this chapter.

3.1 Definitions

We give notations and their definitions.
n: dimension of the input to the network

§=(a,...,an) € {NU{0}}":
0 stands for (0, ...,0). We define half order > in { NU{0}}"™ as the following.

01 = (al, ...,an) > 0y = (bl, ,bn)
“—

di a; >b; NVi a; >b;

We see {N U {0}}™ as the linear space, so that d; + da, ¢d are defined as
such. We also use 0 as a differential operator. For § = (ay,...,a,), we

define
oN () N ()
= (3.1)
0z 0%igy ... O%ng,,
For a vector = (x1,...,2,), a real number x° is defined as follows.
I (3.2)
A= {(C“(SZ) | 1=1,...,m, V’L, c; € N,(SZ >0 ,VZ #] = 0; # 5]} :
We give the following definitions related to A.
N(A) = m (3.3)

15
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T(A) = Z ci (3.4)

n
S
2
s
I

ici X 51 (35)
i=1

NGRS | (%NTS)Y (3.6)

(e,0)eA
V(6) = {(ds,a,A) | § = Sum(A)}:

Here ds a is a natural number defined by the following equation. f is a
C* function from the input space to the real number.

aN((S) P P
W e’ = Z d(S,A A(f) (& (37)
(ds,a,A) EV(9)

pfi = H(c,af)eA (yléz)
This is defined by Equation (3.15) again.

3.2 Framework of the Problem

In this section, we give the framework of the problem. n-dimensional input
space, m-dimensional output space ' and a C' map from the input space to the
output space are given. There are also given several points in the input space
and the values of the map itself and differentials 2 of the map with respect to
those points. Kinds of values given can vary for each point. The values can
include some error or noise.

The problem is to find a neural network that approximates the given mapping
under these conditions. We usually fix the network structure and make the
network learn the internal values such as weights and thresholds from the given
values.

3.3 Network Structure

Figure 3.1 shows the network structure that we propose to learn the higher or-
der differential data. This network has extended parts in addition to a simple
multilayer perceptron. Extended parts are used for propagating and back prop-
agating differential data. This structure is an extension of Jacobian network
that was used for tangent prop in [36]. On the left-hand side of Figure 3.1 there
are the units in the multilayer perceptron part that we call the value net. There
is corresponding ¢ net for each differential operator §. Figure 3.1 shows one of
those § nets on the right side.

IWithout any loss of generality, we assume one-dimensional input space in the following
treatment.
2The differentials are not necessarily along the axes.
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& net has 2°, %, and o™ units for each 2° = z unit in the value net. o™
unit has input from the value net, which Figure 3.1 does not show. Connection
weights w; ; are same in the value net and J nets.

We use the same symbol of the unit for denoting the output of the unit. The
input to the unit is denoted by prefixing “net >” to the symbol of the unit. For
example, the output of a:?’i of i-th unit in [-th layer of d-net is a:?’i and the input
to the unit is net > xii.

The output of xii unit in the § net is the ¢ differential of the corresponding
unit in the value net by the input to the network. The next equation shows the
relationship, where x; is the input vector to the value net.

N () ,.0
o o ()xl,i
L, 851‘[

The network structure is devised so as to realize the chain rule of the § differ-
entials by the input vector. Therefore the outputs of units in the output layer
of the § net are the § differentials of the corresponding units in output layer of
the value net by the input vector.

We use the symbol € for what is propagated backward through the network.
The value of what is propagated backward to the unit is denoted by prefixing
“e b” to the symbol of the unit. For example, what is propagated backward to
1:;5’1- of i-th unit in [-th layer of §-net is e > 37?,1‘-

We sometimes omit the layer in denoting weights w; ; and thresholds b;. To
be correct these should be wy; ;3 (1153 and by ;3.

(3.8)

3.4 Learning Data

This section describes the learning data for the network.

The directions of differentiation for the learning data need not be along axes.
But we limit to the cases of differentiation along axes, since the general cases
need excessively detailed explanation. The learning data is several sets of input
and output, which called patterns.

The input part of the learning data for the network has the form of I =
(I°,...,1%,...). I° is the coordinate of the observation point and this is the same
as in ordinary back propagation. I° is a vector of the same dimension as of the
input space of the value net.

I°, the input to the & net is also a vector of the same dimension as of the input
space of the value net. In cases of N(J) = 1, the input vector is ¢ itself, which
is a vector something like (0, ...,0,1,0,...,0). In other cases (i.e. N(4) > 1), the
input vector is 0, the zero vector.

These are derived by thinking that the input to the ¢ net is a special case
of Equation (3.8). The input to § net is § differential of the input to the
corresponding unit of the value net. In cases of N(§) = 1, the input vector
is 0 itself since dx;/dx), = 1 and since dz(;/dx( ; = 0 if i # j. In cases
of N(6) > 1, the input vector is 0 since dzf,;/dxzf ;0z), = 0 for the any
combination of {4, j, k}.

The output part of the learning data for the network has the form of O =
(0°,...,0°,...). All the elements of the output are the element of the output
space or “«”. O° = % means that there is no differential data for § and that
there will be no back propagation for ¢.
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G|(’}1(A))

Figure 3.1: Network structure for learning differential data: On the left-hand
side of the figure there are the units in the multilayer perceptron part, which
we call the value net. There is corresponding d net for each differential operator
§. This figure shows one of those § nets on the right side. ¢ net has 2°, y°, and
o(™) units for each 20 = x unit in the value net. o™ unit has input from y?i
units of the value net, which Figure 3.1 does not show. Connection weights wj ;
are same in the value net and ¢ nets.
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3.5 Forward Propagation

First, we give the algorithm for forward propagation. We show how the input
I=(I°..,1% ..) is propagated forward through the network.

[ stands for the layer in which the unit belongs. It is not essential that there
exists a layer structure in the network. Here we assume the layer structure for
the ease of explanation. The same algorithm applies for the networks without
the layer structure.

3.5.1 Units in the Value Net (FP)

Here we put yﬁi = netby?i = netbx?i. The value net does not have any y° unit
as in ¢ net, but we assume the above because of uniformity of the descriptions
between the value net and the ¢ net.

The algorithm for the forward propagation for the unit in the value net is
as follows. o here is the sigmoid function for the unit. In this paper we use the
same o for every unit, but the same algorithm applies for the cases where units
have different sigmoid functions.

net > 15?,1 = yﬁi = net > ylo,i =b; + Z Wi T1—1, (3.9)
JEP(i)
xai = 1, =o(net> m?i) = U(yﬁi) (3.10)

3.5.2 Units in the § Net (FP)
(m)

)i unit are given by the following equations.

The input and output to the o

o(™) here is the m-th derivative of the function o. Note that a Ul(j?) unit has
yﬁi for its input as a ¢ unit.

netv ol =y, (3.11)

o = oMy (3.12)

The input and output for yﬁi unit are the same and given by the following
equations.

yl‘s,i = net> yii = Z wi,jx?_ljj (3.13)
J

The input and output of xii unit are the same and given by the following
equations. Units of this kind are Sigma-Pi units described in [34].

§
a:?i = netbuay, = %NT()(l‘“
, (&
=Y dadeT I (vh) (3.14)
(ds,n,A) €V (5) (c,07)€eA

The product about A will be kept as pfi.

= 11 (u) (3.15)

(c,6")€A
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This is not essential for the algorithm, but it affects the efficiency of the imple-
mentation of the algorithm.

proof of the last equation in (3.14) If we set f(z7) = y?i where yﬁi is
being seen as a function of z, then A(f) equals to the IT product in Equation
(3.14), which is pfi. Since xai = U(ylo,i) = o(f(xr)), essentially the same mech-
anism applies to both Equations (3.14) and (3.7) by the correspondence of the
o function in (3.14) to the exponential function e in (3.7). Therefore ds A in
Equation (3.14) is exactly the same as the one in Equation (3.7). O

3.6 Error Function

We define the error function by the following equation.

E=Y o'E’ (3.16)
6>0

Here o is a learning constant corresponding to 6.

For the set of patterns (I,,0,) where p = I°, E° is calculated as follows.
First, each I, is fed into the network, and propagated forward through the
network. Then using the output of network and the given output O,, which is
sometimes called teacher signal, E? is given by the following equation.

B = % Y (0] —af)? (3.17)

Usual back propagation algorithm does not include the learning constant in
the energy, but the constant is used to scale the update values for weights [34].
Our algorithm includes the learning constants in the energy. This is because
each § has an individual learning constant. If we take the former way 4, update
values for each ¢ have to be managed and more memory space is needed. It
is unpractical for the higher order differentials. So the following algorithm is
designed to include the learning constants before the €’s are given to the units
in output layer.

3.7 Back Propagation

Using E defined in Section 3.6, w; ; is updated as follows.

oE

Awij Owi
i.j

(3.18)

First, we are going to show the back propagation algorithm of € for each type
of units. Then we show the update rules for the weights and thresholds. In the
following equations, we assume the case of one pattern and omit the subscript
of the pattern.

€’s which are propagated backward through the network correspond to what
are propagated in ordinary back propagation. That is “the differential of the

30nly the subscript for the pattern is given for z in order to avoid too complex equations.
4That is to scale the update values by learning constants.
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error function with respect to the input to the unit.” We denote that value by
e > u for the unit u. Therefore the definition of € > u is given by the following
equation for the error function E.

oE

EPU= ———
onet>u

(3.19)

The following sections give the back propagation algorithms for the types
of units. This algorithm is for a set of one pattern (I,,0,), but it is easily
extendable to the case of sets of multiple patterns by summation. It is assumed
that the input I, is fed to the network, and forward propagated through the
network.

3.7.1 Units in the Output Layer (BP)

¢’s for the units 2°’s in the output layer ° are given as follows. (In the following
equations subscripts for the layer and the unit are omitted to avoid too complex
equations.)

First, e> 2%, which is € for the units in the output layer of value net, is given
by the following equation.

50 OFE o OEY
epx” = — = —a
Onet > 20 Onet > 20
G OEY  92°

_ 008 0T 0(H0 _ .0) (1) 9
O Hnetnad — @ (0p — z,) oM (net) (3.20)

In cases of d > 0, it is given by the following equation.

st - 9B OE°
o Onet> a9 Onet > 9
OE?
= —aéw = a6 (Og — ng) (321)

3.7.2 Units in the Value Net (BP)

For the units in the value net other than in the output layer, the back propa-
gation algorithm is essentially the ordinary back propagation algorithm with e
of o unit.

o OF
>y 4, = ——m——
=1, onetaf | .
Z OE 8net>y8j
N - dnetvy) ; Onet >y
1
= Z €D yﬁj Wj i O'l(i)l’l- (3.22)
J
0 OE
€ =
Y1, onet>y) |

5If the network does not have the layer structure, the output layer is the set of units whose
outputs are interpreted as parts of the output of the network. For the § net, only 2% units are
included. 3? units and (") units are not included.
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Onet > xgj OF Onet > al(:nﬂi

0 0 - ,
Ly Oneteyp m>1 Onet> al(Tl)’i Inetvy—1,;

B Z_ OF
o . Onet>x

= eva) i+ Z €D O'I(Tl)’i (3.23)

m>1
Even though net>a) | ; = net>y | ; = net;1; (c.f. Equation (3.9)), 27, ;
and y?_l,i units need different back propagation algorithms. This is because
their outputs are connected to the different units. x?fl’i unit’s output is con-

nected to y? j unit and y?_l , unit’s output is connected to x?_li units and o
units.

3.7.3 Units in the § Net (BP)

For the 37211, ; units in 0 net other than in the output layer, the back propagation
algorithm will be given by the following equation.

oF OF
§ E
EDXT . = _—— = —
=1, 8net?ﬁl’i Onet > yij 8net?ﬁl’i

Onet > yﬁ ;

Il
™
v

=

<
S

b

(3.24)

For the o™ units in & net, the back propagation algorithm will be given by

Li
the following equation.

CD) OF OF 801(,’?)
evo = — = -
b 8netl>al(;n) 801(7:) Onety;
5 5
_ Z _0E Oz} ; Jl(m+1)_ Z eval, Oz} ; Ul(m+1)
5o m Tli T i o m) Ol
S:N(8)>m axlvz aaz,? S:N(8)>m a”z,T
= > evaj,
6:N(6)>m
N\ C
X we T ()) e
AT (A)=m A Sum(A)=4 (c,0")eA
= > evaj,
6:N(6)>m
x > dsa pfy | oY (3.25)

A:T(A)=m A Sum(A)=0
For the yﬁi units in ¢ net, the back propagation algorithm will be given by
the following equation. (Note that 8net?:i /Onet > yl‘ii = 8x?:i / 8y£i.)

oE

1)
vy, = —————
he Onet>yp,
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OE 8net?:i
B 5’:62:26 - 8netf’/i Onet > yﬁi
= Y evaj,
§1:6'>5
« Z dé’,AUl(f(A)) ¢ (yii)c—l

A:Sum(A)=6"ATc (¢,0)EA

x I e (3.26)
(c,6")e(A—{(c,0)})

These algorithms summarized for § > 0 and m > 1 as follows.

ebx?_u = 269916,3‘ Wi (3.27)
J
EDUI(ZL) = Z evaf,
6:N(5)>m
X Z d&,A pﬁi Ul(;-n—"_l) (3.28)

A:T(A)=m A Sum(A)=4
’
vy, = ) eva,

(A o
X Z dsr A 01(71( e (ylé,i) !
A:Sum(A)=6"A3c (¢,0)EA

X 11 (W) (3.29)

(e”,6")e(A={(c,9)})

3.8 Update Rules for Weights

In this section, we show the update rules for weights and thresholds. The same
weight shows up in the value net and in the corresponding places of the § net
in Figure 3.1. Therefore the update value for the weight should be the sum of
update values for those corresponding weights. Using equations for ¢ obtained
in Section 3.7, the update rule for the weight w; ; is as follows.

Awij =

OFE _—Z OF 8netl>yii

ow; ; £ Onet > yl‘ii ow; ;

Zebyl‘ii x?flyj (3.30)
§>0

Note that weight updates due to o™ units (m > 1) are included in e y?l

Thresholds b;’s ¢ are special kinds of weights, which appear only in the value
net. Therefore the update rule for the threshold is as follows.

SThresholds are sometimes called biases.
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Ab OF OF 8netl>y2i
v _8_131- a _8net>y£i ob;
= e>yp, (3.31)

Note that bias updates due to o™ units (m > 1) are also included in GDy?,r
In cases we use momentum (c.f. [34]) in the learning algorithm, the update
rules are as follows. ( Here Aw; ; and Ab; stand for previous update values.)

Aw,; = Z €D yl‘s,,- x?_ljj + BAU}M (3.32)
6>0
Ab; = evyp + BAY (3.33)

3.9 Correspondence to Tangent Prop in the First
Order Case

Up to here, Section 3 has given an algorithm for learning differential data of
arbitrary order.

In this section, we give an algorithm for learning differential data of first
order as a special case and establish the equivalence between tangent prop as
described in [36] and the algorithm proposed here.

The following correspondence establishes the equivalence. First, the value
net in this paper corresponds to the Network in [36] and the 0 net of the first
order corresponds to the Jacobian network in [36]. The symbol correspondences
are given in the following, where § = (0, ...,0,1,0,...,0). The symbols on the
left-hand side are those of [36] and the symbols on the right-hand side are those
of this paper.

l

e a; — yﬁi = netbx?ﬂ-

! 0
T, =Ty,

! oF
° bi — _8£?i

! 0
® Ui €Y
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Since the network has no § net higher than first order, the followings hold for
6 =1(0,...,0,1,0,...,0).

o V(0) ={(1,(1,4))}
o T((1,6)=1

The algorithms are given as follows by the symbols of this paper. The
forward propagation algorithms for the value net and the § nets are given by
Equations (3.9) and (3.10), and Equations (3.12), (3.13), and (3.14) respec-
tively. Except for the last one, they are not any simpler for the first order case.
Equation (3.14) takes the following form for the first order case.

x?’i = al(,li)yf’i (3.34)

The backward propagation algorithms for the value net and the § nets are
given by Equations (3.22) and (3.23), and Equations (3.27), (3.28), and (3.29)
respectively. Those equations take the following forms for the first order case.

be?—l,i = ZEDZJ?J Wy Uz(i)u (3.35)
J
eby?flyi = be?fl,i +e>al(i)17i (3.36)
69%?—1,1 = ZEDyij Wy (3.37)
J
1 2
cvol) = evalyl o) (3.38)
vyl = eval Jl(,li) (3.39)

The weight update rules given by Equations (3.32) and (3.33) are the same
for the first order case as for the general case.

Along with the correspondence provided above between the symbols, these
equations are equivalent to the equations from (3) to (6) in [36].






Chapter 4

Implementation and
Experiments

In this chapter, we describe the implementation of the proposed architecture
and algorithm for neural networks learning differential data. Then we illustrate
the results of rather simple experiments by the above implementation.

4.1 Outline of the Program

The architecture and the algorithm of neural networks learning differential data
as described in Chapter 3 have been implemented. The main module of the
program is written in C++ while auxiliary modules are written in Yacc, Lex,
Perl and Java. The total size is about 5,000 lines.

The overall structure of the program is given in Figure 4.1.

The parser module written in Yacc and Lex of the program reads a config-
uration file with C+4+-like syntax as in Figure 4.3.

The program creates the structure of Figure 3.1 up to the necessary differ-
ential order. Then it propagates the input forward and the errors backward
through the network to learn the given data. During the learning, the main
module communicates with the graphical user interface (GUI) module (see Fig-
ure 4.2) written in Java through CORBA (Common Object Request Broker
Architecture) [9] to display the status of the neural network and let the user
change the parameters for the learning.

Though a layered structure of any number of layers and a fixed sigmoid
function for all units are being assumed, these restrictions can be easily removed
since the program is implemented in object oriented way.

This program produces a log file while it is running. Log files include infor-
mation on the errors and the values of weights. Perl scripts parse the log files,
to produce the graphs to show the changes of errors, and to extract the weights
of the network for use in the next session by the program or in Mathematica
programs.

The sigmoid function, o, used for all the units, ! is given by Equation (4.1).
o(z) = 0.5 and o'(x) = 0.25 when x = 0. See Figure 2.1.

1Since the sigmoid function is implemented as an object, it is easy to replace this function
with the other function.

27
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Figure 4.1: Program Structure: The figure shows the overall structure of the
program. Details are given in the text.
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= GUI-NeuralNetwork 4l |

Figure 4.2: Java GUI: The main module of the program communicates with
the graphical user interface (GUI) written in Java through CORBA. Users can
see the status of the neural network such as the current errors. They can also
set the parameters such as learning constants and momentum during learning
dynamically by adjusting the slide bar or by typing the number in directly.
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1
= 4.1
()= T (@.1)
//
// e0l.cfg
// This is a configuration file for an experiment.
//

number_of_layers = 3 ;
number_of_units = {1,6,1} ;

number_of_differentials = 1;
differential_list = {1};

create_network();

set_alphas({0.40, 0.25});

add_data({0.1, 1.0, 0.5, 2.35619});
add_data({0.5, 1.0, 0.5, -2.35619});
add_data({0.9, 1.0, 0.5, 2.35619});

epoch = 20000;
learn();

quitQ;

Figure 4.3: Example Configuration File

4.1.1 Correspondence between the Algorithm and the Pro-
gram

This section gives the correspondence between the algorithm described in Sec-
tion 3 and the program. The information given in this section is utilized when
one needs to see the program and modify it.

0 in Section 3.1 corresponds to the object, “Element” in the program. An
“Element” has non-negative integer a; for its i-th slot and this corresponds to
the differential operator, 9% /0%x;. As a whole, an “Element” with a; in its
i-th slot respectively corresponds to the following differential operators.

aN(é) aN(&)

x  Ouxy..0%x,

(4.2)

A in Section 3.1 corresponds to the object, “Term” in the program. N(A)
corresponds to “term.num_elements” in the program. ¢; corresponds to “term.powers|[i]”
for an “Element” 0;. T'(A) corresponds to “term.sigma_diff”.



4.1. OUTLINE OF THE PROGRAM 31

An “Element” (which corresponds to ) of the program represents the tree
defined by the differential operator, 9N /@°z in Figure 3.1.

A “Term” (which corresponds to A) of the program represents the node
where the product of outputs of 4’ units and a ¢ unit is calculated. 2

Then as in Equation (3.14), the products are multiplied by the coefficient,
ds. Ao and summed. The object “Expression” of the program corresponds to
this calculation. The relationship between an “Expression” and an “Element
is a one-to-one correspondence. They are separated for the sake of clarity of
programming.

ds.a in Section 3.1 corresponds to “expression.coefficients[i]”, which is the
coefficient for the Term, “expression.termsli]”

In Equation (3.28), the inner summation is taken over the Elements (&’s)
that have “total_order” more than m. The outer summation of Equation (3.28)
is taken over the Terms (A’s), which belong to the Expression, which in turn
corresponds to the Element §. 3

In Equation (3.29), the inner summation is taken over the Elements (4'’s)
which have “total_order” more than N(6). The outer summation of Equation
(3.29) is taken over the Terms (A) that belong to the Expression, which in turn
corresponds to the Element 6.

4.1.2 Fighting with Bugs

In implementing neural networks as computer programs, it often happens that
the program with a few bugs often works and sometimes converges on the train-
ing data. Therefore, writing a correct program and checking that the program
is working really right is a harder task for neural network implementation than
usual programming.

Furthermore it took more than two thousand lines of code to implement the
core architecture and algorithm of neural networks learning differential data,
while only several tens of lines of code are enough for implementing the core of
standard neural network architecture and algorithm. The architecture and the
algorithm are much more complex than those of the standard neural networks.

In order to avoid the difficulties and to create a correct program, we take
the following measures.

First of all, we used C++ to write the core. Even though, this is the first
program for me to write with C++4 4, I believe the choice is the right one.
C++ is a strongly typed object oriented programming language. C++ compiler
gives us warnings for unmatched types and others and many bugs have been
prevented in advance. It would have taken much longer time to implement with
C programming language.

The C++ compiler helped us considerably, but the compiler alone does not
solve all the problems. The characteristics of neural network implementations
described previously prevents from determining the implementation is right.

In order to deal with the problem, we use a neural network model built
by Mathematica [41]. The C++ implementation outputs weight values in the
log file. The information is used with the Mathematica model and the C+-+
implementation is checked against the Mathematica model in many aspects such

2The node corresponds to the content of the large curly bracket of Equation (3.14)
31f the Term belongs to the Expression §, then UA = § is guaranteed.
41 have written a standard neural network with C.
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as forward propagation, error back propagation, and weight and bias updates.
This kind of examinations has been conducted many times to remove the bugs.

4.2 Framework of Experiments

In this section, we describe the framework of experiments before we begin to
explain the results of experiments. We give mainly the common settings for the
experiments.

There is a distinction between batch learning and online learning.

Batch learning is usually employed in a situation where the set of the patterns
that the network has to learn is fixed. Forward and backward propagation is
executed for each pattern and weight update values are accumulated during
the process. The weights are updated only after all the patterns in the set are
processed.

Online learning is usually employed in a situation where the pattern comes
one after another. Forward and backward propagation is executed for each new
pattern and weights are updated each time.

We use batch learning with the fixed set of patterns. An epoch of batch
learning means a whole procedure of forward and backward propagations for
patterns in the set and one set of weight updates. FEpoch also indicates the
number of the above procedure executed in the learning up to then.

Important parameters are learning constants and momentums. We refer to
o’ ’s in Equation (3.16) as learning constants. These parameters determine
the size of steps in the gradient descent process. We refer to 8 ’s in Equations
3.32 and 3.33 as momentums. The momentum parameter determines the effect
of past weight changes on the current direction of movement in weight space.
As mentioned in Section 2.3, the term with this parameter is used to avoid
oscillation for a practical purpose of making rapid learning possible [34].

4.3 Simple Illustrative Examples

In this section, we give simple and illustrative examples and show the qualitative
characteristics of neural networks learning differential data.

We show the effect of differential data for the learning problem by taking
the following sine function as a target function.

y = 0.3sin(27(z — 0.1)/0.8) + 0.5 (4.3)

In this case, both the input and the output are one dimension. The graph
is given by Figure 4.4.

We give three pairs (z,y) of the input and the output, (0.1,0.5), (0.5,0.5),
and (0.9,0.5) as training data for a three-layer perceptron with standard back
propagation learning algorithm. The three-layer perceptron is with one unit
in the input layer, six units in the middle (hidden) layer, and one unit in the
output layer.

The output of the consequent neural network after the 20,000 epochs of
learning with learning constant o = 0.4 (see Equation (3.16)) is given by
Figure 4.5. The horizontal line almost like y = 0.5 is the output of the neural
network.
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Figure 4.4: Target Sine Function as a Simple Example: y = 0.3sin(27(z —
0.1)/0.8) + 0.5
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Figure 4.5: Function Learned with Standard Back Propagation: The graph of
the consequent neural networks after learning with standard back propagation.
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Then we let the neural network of the same architecture learn also the first
order differential data on the same points in the input space. We give three
tuples of (z,y,y’), (0.1,0.5,2.35619), (0.5,0.5, —2.35619), and (0.9,0.5, 2.35619)
as training data.

The output of the consequent neural network after the 20,000 epochs of
learning with learning constants a® = 0.4 and o' = 0.25 is given by Figure 4.6.
It gives a much better approximation to the target function than the previous
result.

1

7 \

e
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Figure 4.6: Function Learned with First Order Differential Data: The graph of
the consequent neural networks after learning with first order differential data.

Though the number of points taken in the input space is the same (three)
in both cases, but more data is given in the latter case for the neural network
to learn. It is natural that the neural network performs better in the latter
case. However it is sometimes in the real problems very difficult or costly to
have more observation points to obtain training data. If that is the case and if
the differential data can be obtained along with the differential data, then the
learning algorithm, which can utilize the differential data, is very essential.

We show the effect of higher order differential data for the learning problem
by taking the following quadratic function as a target function.

y=(z—05)%24+04 (4.4)

Also in this case, both the input and the output are one dimension. The graph
of the target function is given by Figure 4.7.

We take x = 0.5 as a training data point. We use a three-layer perceptron
with one unit in the input layer, four units in the middle (hidden) layer, and
one unit in the output layer.

We give a tuple of (z,y,y’), (0.5,0.4,0) as training data. Even with this
first order differential data for use in learning, the graph of the consequent
neural network is given in Figure 4.8 after 10,000 epochs with learning constants
a’ = 0.4 and o' = 0.25. The graph is overlapping with the grid line, y = 0.4.
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Figure 4.7: Target Function 2
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Figure 4.8: Function Learned with First Order Differential Data
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But if we also give second order differential data at the training point (a tuple
of (z,vy,9,vy"), (0.5,0.4,0,2.0)) the consequent neural network approximates
the quadratic function better and the graph is given by Figure 4.9 after 10,000
epochs with learning constants a® = 0.4, a! = 0.5, and o = 0.25.

1

0.2 0.4 0.6 0.8

Figure 4.9: Function Learned with Second Order Differential Data

Figure 4.10 gives the graph of the neural networks learning the following
target function from differential data of a tuple (z,y,y’,y"”,v""), (0.5,0,0,0,6.0)
after 10,000 epochs with learning constants o = 0.4, o' = 0.5, o = 0.25, and
o® =0.1.

y=2(z—0.5)+0.5 (4.5)

At z = 0.5, all the derivatives up to third order are identical between the tar-
get function and the neural network. But at the both ends, the neural network
deviates from the target function. Though deviations depend on each case, we
need to give some qualitative estimates on the deviations and how much data
points are needed for good learning results. In this paper, we give results on
preliminary experiments in Section 5.3.

4.4 Experiments on Polynomials

In this section, we apply neural networks learning differential data to learn-
ing polynomials, report results of experiments, and show some of qualitative
characteristics of neural networks learning differential data.

4.4.1 Experiments on a Linear Function

In this section, we apply neural networks learning differential data to learning
a linear function. The target function (Equation 4.6) is created as follows. The
function is made to output 0.5 at a point randomly chosen from the interval
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Figure 4.10: Function Learned by Third Order Differential Data: The broken
line is the graph of the target function. The solid line is the graph of the
consequent neural network after learning.

[0,1]. Then the gradient of the function is adjusted to make the range of the
function over the [0, 1] to be included in [0.2,0.8]. The latter step was taken to
make use of more sensitive part of neural networks.

f(z) = 0.456113 (z — 0.342268) + 0.5 (4.6)

We use a three-layer perceptron with one unit in the input layer, four units in
the middle (hidden) layer, and one unit in the output layer. Learning constants
are set to {0.40,0.50,0.25} and the momentum is set to 0.1 for all the cases in
this section.

The first training point (z,y,y’,y"”) = (0.748002, 0.685061, 0.456113, 0.0) is
chosen randomly from the interval [0,1]. The graphs of the neural networks
with value data only, up to first order, and up to second order differential data
after 10,000 epochs, are given by Figures 4.11, 4.12, and 4.13 respectively. At
least in the neighborhood of the training point, the neural network with up to
second order differential data performs better than other neural networks.

In addition to the first training point, the second training point (x,y,y’,y") =
(0.0593173, 0.370943,0.456113, 0.0) is chosen randomly from the interval [0, 1].
The graphs of the neural networks with value data only, up to first order, and
up to second order differential data after 10,000 epochs, are given by Figures
4.14, 4.15, and 4.16 respectively.

We cannot tell much difference this time, but all the neural networks with
value data only, up to first order, and up to second order differential data have
converged on the given training data.
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Figure 4.11: Linear Function Learned (One Point, Standard BP): A linear func-
tion, f(z) = 0.456113 (z—0.342268)+0.5 is learned by a neural network through
standard back propagation with training value data from one point. The broken
line is the graph of the target function. The solid line is the graph of the neural
network. The dot represents the training point.
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Figure 4.12: Linear Function Learned (One Point, Up to First Order): A linear
function, f(x) = 0.456113 (z — 0.342268) + 0.5 is learned by a neural network
with training data up to first order differential data from one point. The broken
line is the graph of the target function. The solid line is the graph of the neural
network. The dot represents the training point.
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Figure 4.13: Linear Function Learned (One Point, Up to Second Order): A
linear function, f(z) = 0.456113 (x — 0.342268) + 0.5 is learned by a neural
network with training data up to second order differential data from one point.
The broken line is the graph of the target function. The solid line is the graph
of the neural network. The dot represents the training point.
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Figure 4.14: Linear Function Learned (Two Points, Standard BP): A linear
function, f(x) = 0.456113 (x — 0.342268) + 0.5 is learned by a neural network
through standard back propagation with training value data from two points.
The broken line is the graph of the target function. The solid line is the graph
of the neural network. The dots represent the training points.
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Figure 4.15: Linear Function Learned (Two Points, Up to First Order): A linear
function, f(x) = 0.456113 (z — 0.342268) + 0.5 is learned by a neural network
with training data up to first order differential data from two points. The broken
line is the graph of the target function. The solid line is the graph of the neural
network. The dots represent the training points.
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Figure 4.16: Linear Function Learned (Two Points, Up to Second Order): A
linear function, f(z) = 0.456113 (x — 0.342268) + 0.5 is learned by a neural
network with training data up to second order differential data from two points.
The broken line is the graph of the target function. The solid line is the graph
of the neural network. The dots represent the training points.
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4.4.2 Experiments on a Quadratic Function

In this section, we apply neural networks learning differential data to learning
a quadratic function. The target function (Equation 4.7) is created as follows.
First, a function is made to output 0 at two points x = 0.532805, x = 0.860492
randomly chosen from the interval [0, 1]. Then other coefficient are adjusted to
make the range of the function over the [0, 1] to be [0.2,0.8]. The latter step
was taken to make use of more sensitive part of neural networks.

f(z) = 1.2363 (z — 0.532805) (x — 0.860492) + 0.233188) (4.7)

We use the same settings as in as in Section 4.4.1. We use three-layer per-
ceptron with one unit in the input layer, four units in the middle (hidden) layer,
and one unit in the output layer. Learning constants are set to {0.40, 0.50,0.25}
and the momentum is set to 0.1 for all the cases in this section.

The training point (z,y,’,y"”) = (0.434126, 0.285203, —0.649113, 2.4726) is
chosen randomly from the interval [0,1]. The graphs of the neural networks
with value data only, up to first order, and up to second order differential data
after 10,000 epochs, are given by Figures 4.17, 4.18, and 4.19 respectively.

Also in this case, the neural network with up to second order differential
data performs better than other neural networks in the neighborhood of the
training point.
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Figure 4.17: Quadratic Function Learned (One Point, Standard BP): A
Quadratic function, f(z) = 1.2363 (z — 0.532805) (x — 0.860492) + 0.233188
is learned by a neural network through standard back propagation with train-
ing value data from one point. The broken line is the graph of the target
function. The solid line is the graph of the neural network. The dot represents
the training point.
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Figure 4.18: Quadratic Function Learned (One Point, Up to First Order): A
Quadratic function, f(x) = 1.2363 (x — 0.532805) (z — 0.860492) + 0.233188 is
learned by a neural network with training data up to first order differential data
from one point. The broken line is the graph of the target function. The solid
line is the graph of the neural network. The dot represents the training point.

4.5 Experiments on a Sine Function

In this section, we apply neural networks learning differential data to learning
a sine function, report results of experiments, and show some of qualitative
characteristics and quantitative data of neural networks learning differential
data.

The task is essentially more difficult than the task in Section 4.4 since any
order derivative of the function is non-constant. This section also provides
results on neural networks learning up to third order differential data.

We use the following sine function as a target function, which ranges [0.1, 0.9]
for the domain of [0.0, 1.0]. (See figure 4.20.)

f(z) = 0.4 sin(2rx) +0.5 (4.8)

We carried out three experiments to compare the proposed algorithm with
the standard back propagation (BP). First, we give the common settings for all
three cases and then we give the individual settings for each case.

The neural network and its initial state are the same for all cases. We use
a neural network with one input unit, 16 hidden units, and one output unit.
The weights and biases are initialized with the values chosen randomly from the
interval [—0.01,0.01]. The momentum was set for 0.1.

Here follows individual settings.

Case 1 (Standard BP with three data points): We trained the network
with the standard back propagation algorithm. Learning constants is 1.0 for
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Figure 4.19: Quadratic Function Learned (One Point, Up to Second Order): A
Quadratic function, f(x) = 1.2363 (x — 0.532805) (z — 0.860492) + 0.233188 is
learned by a neural network with training data up to second order differential
data from one point. The broken line is the graph of the target function. The
solid line is the graph of the neural network. The dot represents the training
point.
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Figure 4.20: Target sine function: f(x) = 0.4 sin(27x) + 0.5
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value data. Three training data points are the same ones as in Case 1. The
neural networks are trained for the 10,000 learning epochs on the value data
from the three training data points.

Case 2 (Standard BP with nine data points): We trained the network
with the standard back propagation algorithm. Learning constants is 1.0 for
value data. Nine training data points, 0.1, 0.2, ... , 0.9, were selected uniformly
from the interval [0, 1]. The neural networks are trained for the 10,000 learning
epochs on the value data from the nine training data points.

Case 3 (Up to first order with three data points): We trained the
network with the algorithm proposed in this paper up to the second order.
Learning constants are 1.0 and 0.01 for value data and first order differential
data, respectively. Three training data points were randomly selected from the
interval [0, 1]. The neural networks are trained for the 200,000 learning epochs
on the training data up to first order from the three training data points.

Case 4 (Up to second order with three data points): We trained the
network with the algorithm proposed in this paper up to the second order.
Learning constants are 1.0, 0.01, and 0.001 for value data, first order differential
data, and second order differential data, respectively. Three training data points
were randomly selected from the interval [0, 1]. The neural networks are trained
for the 1,000,000 learning epochs on the training data up to second order from
the three training data points.

Case 5 (Up to third order with three data points): We trained the
network with the algorithm proposed in this paper up to the second order.
Learning constants are 1.0, 0.01, 0.001, and 0.0000001 for value data, first order
differential data, second order differential data and third order differential data,
respectively. Three training data points were randomly selected from the inter-
val [0, 1]. The neural networks are trained for the 3,000,000 learning epochs on
the training data up to third order from the three training data points.

We carry out the experiment in case 1 to see how well the standard back
propagation algorithm performs if the number of data points is the same as in
case 3.

We carry out the experiment in case 2 to see how well the standard back
propagation algorithm performs if the number of data given to the neural net-
work is the same as in case 4. Since there are value, first order differential,
and second order differential data for each data point, there is three times more
data for each data point in the case 4 than the standard back propagation cases.
Therefore nine data points are selected for the case 2.

Figures 4.21, 4.22, 4.23, 4.24, and 4.25 show the value, the first order, and the
second order outputs of the trained neural networks for three cases. Naturally
the first and the second order outputs are much closer to those of target function
in cases 1 than cases 2 and case 3 on the training data points.

The table 4.1 is given to see the overall performance of the trained neural
networks on the interval [0,1]. || ||2,0, || |l2,1, and || ||2,2 distances on the interval
[0,1] between the target function and the trained neural network are given in
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Il 12,0 I 12 | 1 ll22 | Il 1l23
Case 1 | 0.1714 1.473 8.780 | 74.25
Case 2 | 0.04478 | 1.007 14.59 | 260.6
Case 3 | 0.1085 0.9613 | 8.712 | 130.3
Case 4 | 0.07305 | 0.8281 | 12.45 | 293.3
Case 5 | 0.04232 | 0.4039 | 3.575 | 74.88

Table 4.1: || [l2,0, | l21, Il [l2,2, and || [|l2,3 distances: || [l20, || [[2.1; [ [l2.2, and
I ll2,2 distances on the interval [0, 1] between the target function and the trained
neural network are given for each case.

the table for each case. These distances are given by the following equations
where n(z) is the function defined by the neural network.

e da@))
If = s = { | (- )} (19)

Figure 4.26 gives learning curves for all the cases. The graphs show the
changes of errors for cases 1, 2, 3, 4, and 5 from the top respectively.

We describe several observations obtained from those experiments.

First of all, the neural networks in case 3, 4, and 5 all succeeded to learn
to approximate all the training data up to second order on the training data
points. This also supports the correctness of the proposed algorithm along with
the check by Mathematica.

In Table 4.1, the || ||2,0 distance from the target function of the neural net-
work in case 4 happens to be smaller than the one in case 1. This might suggests
that the neural networks learning differential data can give better overall per-
formance over the domain than the standard back propagation neural networks
if the constraints on differential data are given along with the constraints on
value data.

On the other hand, the || ||2,2 distance from the target function of the neural
network in case 4 happens to be larger than the one in case 1. This was quite
unexpected, but the situation might change when we add more data points.

Even though there are such several reversals in Table 4.1, overall performance
gets better with higher order differential data.

Another unexpected observation is that it took fairly large learning epochs
for case 2, which are comparable to case 4. We expected to have large learning
epochs for case 4 since learning differential data will need subtle adjustments,
but we did not expect for case 2 since there is only training value data to learn.
This might suggest that the number of learning epochs needed does not depend
on the differential order of the data but on the size of the training data. °

For the above observations, we need to carry out analyses and further ex-
periments to confirm them.

5The actual learning time also depends on the time needed for each epoch, which is longer
for higher differential orders even if the size of training data is the same. Nevertheless it is an
interesting point to consider theoretically.
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Figure 4.21: [Case 1] Outputs of the trained network: The graphs show the
value, first order, second order, and third order outputs of the neural network
in case 1 from the top respectively. The solid lines show the outputs of the
trained neural network in case 1 after 10,000 learning epochs. The broken line
is the output of the target function. The dots represent the three training data
points.
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Figure 4.22: [Case 2| Outputs of the trained network: The graphs show the
value, first order, second order, and third order outputs of the neural network
in case 2 from the top respectively . The solid lines show the outputs of the
trained neural network in case 2 after 1,000,000 learning epochs. The broken
line is the output of the target function. The dots represent the nine training
data points.
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Figure 4.23: [Case 3] Outputs of the trained network: The graphs show the
value, first order, second order, and third order outputs of the neural network
in case 3 from the top respectively . The solid lines show the outputs of the
trained neural network in case 3 after 200,000 learning epochs. The broken line
is the output of the target function. The dots represent the three training data
points.
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Figure 4.24: [Case 4] Outputs of the trained network: The graphs show the
value, first order, second order, and third order outputs of the neural network
in case 4 from the top respectively . The solid lines show the outputs of the
trained neural network in case 4 after 1,000,000 learning epochs. The broken
line is the output of the target function. The dots represent the three training
data points.
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Figure 4.25: [Case 5] Outputs of the trained network: The graphs show the
value, first order, second order, and third order outputs of the neural network
in case 5 from the top respectively . The solid lines show the outputs of the
trained neural network in case 5 after 3,000,000 learning epochs. The broken
line is the output of the target function. The dots represent the three training
data points.
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Figure 4.26: Learning curves: The graphs show the changes of errors for cases 1,
2, 3, 4, and 5 from the top respectively. The axes of the graphs have logarithmic
scaling. “Total”, “Error 0”7, “Error 17, “Error 2” and “Error 3” stand for E in
Equation (3.16), value, first order, second order, and third order errors (E’s in
Equation (3.17)) respectively. For cases 1 and 2, “Total” and “Error0” are the
same because the learning constant for the cases is 1.0. Case 1, 2, 3, 4, and
5 have learning epochs of 10,000, 1,000,000, 200,000, 1,000,000, and 3,000,000
respectively.






Chapter 5

Analyses

In this chapter, we present analyses of neural networks learning differential data
mainly in the first order cases. Analyses include comparison with extra pattern
scheme, sample complexity, effect of irrelevant features, and noise robustness.

What is a fair comparison between standard back propagation and learning
differential data? There are many cases where one can get differential data
along with value data at a very small cost, such as Simard’s case of pattern
recognition [36]. In those cases, it is justified to use extra resources (space and
time) in order to utilize additional information and to get more accurate results.
But is that all? Is differential data just additional information? Is differential
data not different from, for example, adding new value patterns? In this chapter,
we tackle these questions from many viewpoints.

We call the first derivatives of functions slopes for short in this chapter. We
also call the following type of learning, EBNN learning. In EBNN learning, we
let the neural network learn all the axial first derivatives along with the value
data of the target function and we use the same learning constant for all the first
derivatives. EBNN learning is named after Explanation-Based Neural Network
[25] where this type of learning is used. Most of the results in this chapter are
on this type of learning.

The experiments for the analyses in Sections 5.2, 5.3, 5.4, and 5.5 are con-
ducted with the implementation specialized for EBNN learning, a prior imple-
mentation to the one described in Chapter 4.

5.1 Comparison with Extra Pattern Scheme

In this section, we attempt a comparison between learning differential data and
learning extra value patterns. First, we give a mathematical formalization of
the problem as a foundation for comparison. Then through the arguments of a
simple case and a general case, we show that adding differential error function
gives good characteristics to the set of global minima and some advantages over
adding additional value error function for new value patterns. !

Let f; : U € R — R™ be the target function that has to be learned. Let the
neural network in consideration have s parameters (that are weights and biases).

In this section we set aside the problem of how to reach the global minima (i.e. learnability
issue) and concentrate on the structure of the set of global minima.

33
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For w € R®* = W, define f,,(w) : U C R — R™ as the function computed by
the neural network with parameters set to w. Let ge be generalization error
such that 2

ge(f) = /U o) — £ )2 dp (5.1)

The strategy of standard back propagation is to minimize the mean square
error between the values of the functions f; and f,(w) on the training patterns
by gradient descent. The strategy of the neural networks learning differential
data is to use the value and differential data errors combined instead of the
value only error.

For a fixed set of points P = {p1,p2,....,pr} C U we define functionals (as
functions on W) e, and ey and sets as follows:

ev(w) = ev(fn(w)) = Z |fe(pi) = fu(w)(pi) (5.2)
ro I 2

fw) = @) =33 e) - e 6

Min(ge) = {w € W | ge(w) is minimum} (5.4)

Min(ey) = {w € W|ey(w) is minimum} (5.5)

Min(es) = {w € W es(w) is minimum} (5.6)

Min(ey + es) = {w € W ey (w) + eg(w) is minimum} (5.7)

where [ stands for the number of units in the input layer and subscript s of e
stands for slope (i.e. first derivatives).

If we take value data from new points near the original points, we might be
able to mimic the effect of slope information. For example, if we add a value
pattern, {{zx1 + Axy, 22, ...z}, f(x1 + Azy,29,...,27)} along with the original
value pattern {{z1,x2,...,x1}, f(21,22,....,21)} to the pattern set, the pattern
set has implicit information of 9f/0x(z1, x2, ..., zs) in it.

As the time complexity of neural networks learning differential data is more
expensive than that of standard back propagation, it is in a sense fair to compare
learning differential data against standard back propagation with more training
patterns. We call this method the extra pattern scheme, in which we apply the
standard back propagation with nearby patterns of the original patterns added

2The problem is more generally formulated as follows: Fix a function f; in {f : U C
R! — R™}. Define a functional ge over the set V C {f : U C Rl — R™} whose range is
R. Assume that ge(f) > 0 for any f € V and that ge(f;) = 0. For example, ge could be
the LP-distance or L°°-distance from the function f: with appropriate measure on U. The
measure might be used to express the probability distribution of data. We call the functional
ge the generalization error. The problem is to find a function f € V with the property that
ge(ft) = mingcy ge(f) with access to information of f; on a finite set of points in U.

With these definitions in place, we can think of V' as a version space for this problem and
ge as fitness of these hypotheses (i.e. functions). By identifying the set of weights (including
biases) w € R™ = W and the function f,(w) computed by the neural network with the weight
w, we can identify the version space V and the weight space W. By identifying this way, these
functionals ge, ey and es on the version space V' can be thought as functions on the weight
space W.
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to the pattern set. In the following sections we see the qualitative difference
between learning differential data and extra pattern scheme.

In the extra pattern scheme, we need additional information about nearby
patterns. To get the information might be costly even if they are near the orig-
inal patterns in the pattern set. We can devise another scheme in which we use
the standard back propagation and the same information as learning differential
data. We use the value and slope information of the original pattern to extrap-
olate the values of nearby patterns and add them to the value pattern set. We
call this method the synthesized pattern scheme. The same line of arguments in
the following sections applies for comparison between learning differential data
and synthesized pattern scheme as one between learning differential data and
extra pattern scheme, and we limit our comparison to extra pattern scheme.

5.1.1 A Simple Case

In this section, by using a simple example, we now intuitively demonstrate that
learning differential data and the extra pattern scheme are qualitatively different.

Let us take the example of approximating the function f(z) = o(x,1,0) =
1/(1 4+ e7®) by o(x,w,b) = 1/(1 + e~ (w=+b) We can think of it as a function
approximation by a single threshold unit with a weight w and a bias b. Whatever
the reasonable choice of ge may be, Min(ge) = (w,b) = (1,0) because two
functions f(z) and o(x,w,b) are identical if and only if (w,b) = (1,0). Without
loss of generality we pick x = 0.5 as a training example. In this case, e, (w,b)
has a surface like one in Figure 5.1. The curve on the surface is the projection
of Min(ey) = {(w,b)|0.5(w — 1) — b = 0} onto the surface. The point on the
surface is the projection of (w,b) = (1,0). In Figure 5.2 we plot the surface of
es(w,b). The curve on the surface is the projection of Min(es) onto the surface.
The point on the surface is the projection of (w,b) = (1,0). With either e, or
es only, there is no reason why the gradient descent method prefers one point to
another on the corresponding curve. But if we add e, and ey together, then the
surface looks like one in Figure 5.3. The curves on the surface are the projections
of Min(e,) and Min(es) onto the surface. The point on the surface is the
projection of (w,b) = (1,0). In this case, Min(e, + es) = Min(ge) = {(1,0)}.
In order to approximate the function correctly using the value error only, we
need two different points as examples. Using e, + es we could approximate the
function correctly even from one point.

It is true that we are extracting more information from one point when we
are using e, + es instead of e,. Let us see what happens if we take e, with
respect to a point in the neighborhood of the point z = 0.5 instead of es and
let us see what is the qualitative difference between these two. The surface of
ey + e, with e, for x = 0.5 and €/, for = 0.6 looks like one in Figure 5.4. Two
lines on the surface is the projection of Min(ey) and Min(el) on the surface.
Two lines are almost identical and the error surface is almost identical to Figure
5.1 except that the scale on Error axis has doubled. The surface of Figure 5.4
is not much different from the surface of Figure 5.1 qualitatively.

On the other hand in Figure 5.3, two curves intersect at a much larger angle,
even though two curves are constructed from information on one point. And
the surface of Figure 5.3 is quite different from Figure 5.1.

From this observation, we can expect that adding new points near the origi-
nal points of training examples does not contribute much to finding minima, and
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Figure 5.1: Value error: e,(w,b) is plotted. The curve on the surface is the
projection of Min(ey) = {(w,b)]0.5(w—1)—b = 0} onto the surface. The point
on the surface is the projection of (w,b) = (1,0).

Figure 5.2: Slope error: e,(w,b) is plotted. The curve on the surface is
the projection of Min(es) onto the surface. The point on the surface is the
projection of (w,b) = (1,0).
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Figure 5.3: Value error and slope error combined: e, + eg is plotted.
The curves on the surface are the projections of Min(ey) and Min(es) onto the
surface. The point on the surface is the projection of (w,b) = (1,0). Note that
two curves intersect at a much larger angle than the curves in Figure 5.4.
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Figure 5.4: Value errors on two points: e, + €/, is plotted. Two lines on
the surface is the projection of Min(e,) and Min(e}) on the surface. The point
on the surface is the projection of (w,b) = (1,0). Note that these two lines are
almost identical.

that learning differential data is much more noise-tolerant than extra pattern
scheme.

5.1.2 A General Case

In this section, we extend the analysis in the previous section to a more gen-
eral case with reasonable conditions. We show even in a general case that the
additional value error function of a nearby point of the original point is less
noise-tolerant than the slope error function of the original point.

Let f; be the target function and f,, be the function computed by the neural
network. We consider the case of a single point pg € U (U is the input space)
and a single output unit. Therefore we are considering the case of a single
pattern {po, fi(po)}. We notate € for the value error and e? for the slope error
with respect to pg. We also consider moving pg a little. Let us take a very short
line {p(t) = po +t Ap = (p{ +t Ap*,....,pd +t Ap?) | t € [0,1]} in the input
space so that p(0) = pg. We notate e (t) for the value error for the single point
p(t).

Here are two assumptions we make.

1. Min(e2), Min(e?), and Min(ey(1)) have at least one point in common.
That is:

Min(e2) N Min(el) N Min(e5(1)) > Jwo (5.8)
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2. (Vuwfn)(wo,p0), (Vwfn)(wo,p(1)), and (Vw g’;) (wo,po)’s are non-zero
vectors for the above weight wy.

Assumption 1 is not an unreasonable one since Min(e), Min(e?), and
Min(ey(1)) are generally hyperplanes (n — l-dimensional manifolds) in the
weight space W where n is the dimension of W and where W is high-dimensional
enough. If the neural network approximates value and differential data up to
the first order at py and value data at p(1) of the target function f; correctly,
then Min(e2) N Min(e?) N Min(ey(1)) is not an empty set.

The normals at wy to the surfaces Min(el), Min(e?), and Min(ey(1)) are
(wan)(wmpO)v (wan)(woap(l))v and (vw ?9];7:) (wo,POYS respectively.

We see how Min(e;(t)) changes from ¢ = 0 to ¢t = 1. In order to do so,

we see the difference of the normals to Min(ey(t)) at ¢ = 0 and ¢t = 1. By
expanding (V. fr)(wo,p(t)) around ¢ = 0, we obtain the following.

Tl p ) = GTuf)nm) + 3 (o

Ty

) (wo,po) Ap'

+0(1Apl?) (5.9)

So the difference between the normals to Min(e?) and Min(ey(1)) is ap-
proximately a linear combination of normals to Min(e?) at wq. (See Figure
5.5.) That means that Min(ey(1))) is less distinguishable from Min(el) than
Min(e) in the neighborhood of wy.

To use the sum of €2 and the value errors e’’s with respect to points {p; =
po+(0, ..., €, ...,0)|i = 1, .., I'} has similar effect to use e, +es. But the differences
in normals to these value error surfaces for these points are very slight and these
differences are essentially linear combinations of normals to Min(el) at wp.

Therefore we can reconfirm the expectation for the simple case in the pre-
vious section. The differences in normals being slight, the differences in the
structures of the surfaces of ¢! and e!’s are slight and a small amount of noise
makes these surfaces indistinguishable.

We can put this the other way around. Taking the surface normal to all of

(Vw ‘3{?) (wo,po) ’s at wo (i.e. taking Min(el)) is more robust to noise and is

efficient. Using e has similar to but more efficient and robust effects on the
structure of the minimum set of the error function than using the value errors
of points near pg.

5.2 How Learnings Work

In this section, we pick up one function approximation task and try standard
back propagation and EBNN learning to see how learnings work in detail.

We use the following nonlinear function for a learning problem. (See Figure
5.6 for the surface plot of the target function.)

g(z,y) = 0.5e10(@=02*+u=05%) | 0 95 gin(8zy) + 0.25 (5.10)

The task is to approximate this function. The network configuration is two
input units (for 2 and y), six hidden units, and one output unit (for g(z,y)).
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Figure 5.5: General case: The figure shows the normal vectors (shown as
arrows) to the surfaces Min(e?), Min(el), and Min(ey(1)). The difference
between the normal vectors to two surfaces Min(e) and Min(e;(1)) is approx-

imately a linear combination of the normals to Min(e?).
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The network is fully connected between layers, and each unit has a bias, except
for input units.

One pattern for standard back propagation consists of the input value, x and
y, and the desired value output, g(z,y), for the output unit. One pattern for
EBNN learning consists of the input value, x and y, the desired value output,
g(z,y), for the output unit of the value net and the desired outputs for § nets,
%(z,y) and 3L (z,y).

We use the learning constants 0.5 for standard back propagation, and 0.444
for value data, 0.0278 for EBNN error (the sum of squared errors of all axial
first derivatives) for EBNN learning.> We made the network learn for 10,000
epochs. We use ten patterns. The input value of first pattern is taken to be
(0.5,0.5). The input values of the remaining nine patterns were taken from the
uniform distribution on [0, 1] x [0,1]. In Figure 5.6, the points on the surface
are the projections of the input values of the ten patterns onto the surface. The
lines coming out from the points are the normals to the surface.*

Figure 5.6: Surface of the target function: The surface of the target function
is shown. The points on the surface are the projections of input values onto the
surface. The lines coming out from the points are the unit normals to the
surface.

3The choice of learning constants for EBNN learning is made empirically. First 0.5 for back
propagation is divided into the ratio of 8 : 1 for the value net and § nets. Then the learning
constant for § nets is calculated by dividing the quotient by the number of ¢ nets (in this case
2).
4These normals are normalized to be the same length in order to make the figure easy to
understand. In the following two figures of surfaces, all the normals are also normalized to be
the same length.
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The graph of the value error E° (see Equation (3.17)) for standard back
propagation is given by Figure 5.7. The surface learned by learning values only
is given by Figure 5.8. The broken lines are the normals to the surface of target
function and the solid lines are the normals to this surface learned by back
propagation. Note that these normals are quite different from each other.
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Figure 5.7: Error curve of back propagation: The change of the value error
E? is plotted against the number of epochs.

The graphs of the total error E (, which learning constants are involved in
the calculation. See Equation (3.16),) for EBNN learning, its value error part,
and its slope error part are given in Figure 5.9. The surface learned by EBNN
learning given by Figure 5.10. The broken lines are the normals to the surface
of target function and the solid lines are the normals to this surface learned by
EBNN learning. Note that in this case these two normals for each point are
very close except for one point. Because they are so close, some of the broken
lines are hidden by the solid lines.

We estimated the quality of each learned function after 10,000 epochs by
the average of squares of value errors from the target function on 200 x 200
equidistant lattice points. We also call this the generalization error after Section
5.1. It is 0.0102 for the function learned by back propagation and it is 0.0063 for
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Figure 5.8: Surface learned by back propagation: The surface learned by
back propagation is shown. The broken lines are the normals to the surface of
the target function and the solid lines are the normals to this surface learned by
back propagation. Note that these normals are quite different from each other.
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Figure 5.9: Error curves of EBNN learning: The graphs of the total error
E for EBNN learning (sum), its value error part (value), and its slope error part
(ebnn-s) are plotted against the number of epochs for the EBNN learning.
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Figure 5.10: Surface learned by EBNN learning: The surface learned by
EBNN learning is shown. The broken lines are the normals to the surface of
target function and the solid lines are the normals to this surface learned by
EBNN learning. Note that in this case these two normals for each point are
very close except for one point. Because they are so close, some of the broken
lines are hidden by the solid lines.
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the function learned by EBNN learning. > The generalization errors for learning
procedures by back propagation and EBNN learning are plotted against the
number of epochs in Figure 5.11. The generalization error for EBNN learning
is faster to drop and its final value is smaller.
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Figure 5.11: Graphs of generalization errors: The generalization errors for
learning procedures by back propagation and EBNN learning are plotted against
the number of epochs. Note that the generalization error for EBNN learning is
faster to drop and the final value of it is smaller than that of back propagation.

5.3 Sample Complexity

In this section, we explain the results of the experiments to see the improvement
in generalization of EBNN learning compared to back propagation learning in
terms of the number of required training patterns.

We use the function g of Equation (5.10) in Section 5.2. We use z and y for
two inputs of the neural network. The general settings for the experiments are

5We have to remind that it is not always the case that EBNN learning outperforms back
propagation. However in the following section, statistical results support that EBNN learning
does better than back propagation on average.
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the same as those described in the beginning of Section 5.2.

We run the experiments for from 1 to 100 patterns. In each pattern set, the
first pattern is taken to be (0.5,0.5) and the other remaining patterns are taken
from the uniform distribution on the input space, [0, 1] x [0, 1].

We estimate the performance of each learned neural network after 10,000
epochs by the average of squares of value errors from the target function on
26 x 26 equidistant lattice points. This performance is same as the generalization
error in Section 5.2 except for the number of lattice points.

We plot the performances of back propagation and EBNN learning against
the number of patterns in Figure 5.12. Except for small number of patterns and
for more than 50 patterns, EBNN learning outperforms back propagation. By
crossing the graphs horizontally, one can see the required number of patterns
to achieve certain performance for EBNN learning is 1 to 2 times smaller than
that of back propagation in the region where EBNN learning outperforms back
propagation.

The neural networks used in both methods are the same. Therefore in each
particular trial, back propagation might outperform EBNN learning.® By av-
eraging over 10 trials, we can see the apparent tendency that EBNN learning
outperforms back propagation as Figure 5.12 shows it.

For first several patterns and for patterns more than 50, EBNN learning
is outperformed by back propagation. We assume the reasons are the follow-
ing. Back propagation approximates only values at points while EBNN learning
approximates also slopes at points. While there are a few points, with back
propagation the whole surface stays at the level of somewhat around the given
values, But in EBNN learning, fitting slopes makes other parts of surface de-
viate from the target surface. As soon as the points are dense enough, EBNN
learning starts to outperform the back propagation.

But then, the performance of back propagation catches up that of EBNN
learning at 50 patterns. After examining the data of learning procedure, we
observed that EBNN learning stops improving on either the value error or the
EBNN slope error in the early stages of learning procedures. We believe what
is happening here is that there are too many constraints for the number of
parameters (i.e. weights and biases) in the neural network. Therefore we be-
lieve the reason why EBNN learning is outperformed by back propagation is
because of the above and because we estimate the performance in terms of the
generalization error that is essentially the value error.

5.4 Effect of Irrelevant Features

In order to see how irrelevant dimensions affect the learning, we set up the
following experiments.

We use the function g of Equation (5.10) in Section 5.2. We used 2 inputs
for  and y as relevant inputs and other 0, 3, or 8 inputs as irrelevant inputs.
(Therefore the numbers of the total input units are 2, 5, and 10 respectively.)
Let x1,... be irrelevant inputs. We take the following g function as the target
function.

9(z,y,x1,...) = g(x,y) (5.11)

6 Actually in each individual trial, it often happened that back propagation outperforms
EBNN learning for certain areas.
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Figure 5.12: Graphs of sample complexity: We plot the performances of
back propagation (bp) and EBNN learning (tp) against the number of patterns
for from 1 to 100 patterns and join them by the lines. Except for small number
of patterns and for more than 50 patterns, EBNN learning outperforms back
propagation. By crossing the graphs horizontally, one can see the required
number of patterns to achieve certain performance for EBNN learning is 1 to 2
times smaller than that of back propagation in the region where EBNN learning
outperforms back propagation.
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As the input patterns, we draw the values for {z,y,z1,...} from the uniform
distribution over [0,1]. As the desired value outputs, we give g(x,y). As the
desired outputs for § nets, we give (%, g—z, 0,...,0).

We do essentially the same experiment in Section 5.3 for each number of
input units. We collected the performance of each method on from 1 to 100
patterns. The performances are plotted against the number of patterns for the
networks of 2, 5, and 10 inputs in Figure 5.13. We can see that the performance
of back propagation degenerates rapidly as the number of irrelevant input units
increases, while EBNN learning stays at the same level.

We use above results to produce Figure 5.14. We are considering the follow-
ing situation. We get one pattern at a time. Each time we make the networks
learn the patterns we have accumulated up to the point and make a predic-
tion. These graphs show the accumulated mistakes (summed errors) done by
the networks up to the point. (This is similar to the mistake bound in [19].)
The detailed explanation of what are plotted is the following. In these graphs,
we plot the integrated value of the square root of the average performance up
to the number of patterns. Therefore, for the number ¢, the following value is
plotted. (Here I.A.P. stands for Integrated Average Performance.)

n
I.A.P. = Z \/the average performance for i patterns (5.12)

i=1

Where the average performance is missing, we interpolated its value linearly
from the values known. 7

These results show that EBNN learning is more robust to the number of
irrelevant input units. But, of course, there is no magic in learning differential
data. The merit of learning differential data is that it can utilize more informa-
tion when there are more input units. When the dimension of irrelevant inputs
gets large, the information that learning differential data can utilize increases
with the irrelevant dimension while the information back propagation can uti-
lize stays the same. The point is that learning differential data can use that
additional information from these points.

5.5 Noise Robustness

In the frameworks like Explanation-Based Neural Network (EBNN) [25] in which
target slopes are constructed from incomplete and/or inaccurate world models,
noises in target slopes are inevitable. In this section we explain the results of
experiments to see how noises in target values and in target slopes affect back
propagation and EBNN learning. The experimental results are adopted from
[22].

We use the function g of Equation (5.10) in Section 5.2 as the target func-
tion again and used fixed 20 patterns for all the experiments. By numerical
integration, the averages of the absolute values of derivatives are given by:

1 1
/0 /0
7As Figure 5.14 is produced from the results in Figure 5.13, the graphs in Figure 5.14

give the same conclusion that EBNN learning is more robust with respect to the number of
irrelevant input units.

d
ﬁ dedy =~ 0.893483 (5.13)
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Figure 5.13: Graphs of effect of irrelevant features: The performances are
plotted against the number of patterns for the networks of 2, 5, and 10 inputs for
from 1 to 100 patterns. We can see that the performance of back propagation
(bp) degenerates rapidly as the number of irrelevant input units increases, while
EBNN learning (tp) stays at the same level.
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Figure 5.14: Graphs of mistake bound: In these graphs, we plot I.A.P., the
integrated value of the square root of the average performance up to the number
of patterns. These graphs show that EBNN learning is more robust with respect
to the number of irrelevant input units.
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1 p1
I
They are both around 1.0. So we decided to give noises of the same multitude to
derivatives by both  and y. When we say the value (or respectively slope) noise
level is 0.1, the random value is drawn from the normal probabilistic distribution
with its variation 0.1 and with its mean 0 and it is added to each desired value
(or respectively & net) output.® When the resulting desired output value is less
than 0.0 or greater than 1.0, it is reset to 0.0 or 1.0 accordingly.

First, we run standard back propagation, plotting the performances as the
value noise level is varied from 0.0 to 1.0 with the step 0.05 with the 20 patterns.
The result is given in Figure 5.15.

We then run EBNN learning, plotting performance as the slope noise level is
varied from 0.0 to 2.0 with step 0.1 with the 20 patterns (with zero value noise).
The result is given in Figure 5.16.

We also run EBNN learning, changing both the value and slope noise levels
as in the previous two experiments. The result is given in Figure 5.17.

From these experiments, we can conclude the following.

From Figure 5.15 and the cross section of Figure 5.17 for which “slope noise level =
0.0”, EBNN learning generalizes better than standard back propagation even if
value noises are present.

By observing the cross sections of Figure 5.17 for which value noise level is
constant, we can conclude that the greater the value noise level, the less the
slope noise level matters. Also from the above cross sections and Figure 5.15,
we can also conclude the slope noise level for which EBNN learning has the
same performance as standard back propagation increases, as the value noise
level increases.

In Figure 5.16, the curve of the performance by EBNN learning shows a
graceful degeneration as the slope noise level increases. The crossover point
of these two curves in Figure 5.16 shows when EBNN learning is degenerated
enough so as to have the same performance of back propagation without noise.
That happened around where the slope noise level is 1.2. Considering that the
average absolute values of derivatives are around 1.0, we conclude (in this case)
that EBNN learning is quite robust against noises.

This results support the observations in Sections 5.1.1 and 5.1.2 that the
minimum set for the EBNN slope error has quite different characteristics from
that of the value error and that using the EBNN slope error is robust.

dedy ~ 1.01263 (5.14)

dg
dy

8We also tried the uniform probabilistic distribution like the one on [—0.1,0.1] and we got
very similar results described here.
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Figure 5.15: Performance of back propagation: The performance of stan-
dard back propagation against the value noise level is plotted. Noises are added
to desired output values. The value noise level is varied from 0.0 to 1.0 in
increments of 0.05.
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Figure 5.16: Performance of EBNN learning (1): The performance of
EBNN learning against the slope noise level is plotted as the solid line. Noises
are added only to desired outputs for § nets. The slope noise level is changed
from 0.0 to 2.0 with step size 0.1. The broken line is the performance of standard
back propagation with no noise in the training patterns. (See Figure 5.15 where
the value noise level is 0.0.) Notice that solid line and the broken line cross
around where the noise level is 1.2. That is the crossover point where the
desired outputs for § nets are degraded enough to match the performance of
standard back propagation.
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Figure 5.17: Performance of EBNN learning (2): The performance of
EBNN learning against both the value and slope noise levels is plotted.






Chapter 6

An Application to
Continuous Action
Generation in
Reinforcement Learning

In this chapter, we describe an application of neural networks learning differen-
tial data to continuous action generation in reinforcement learning. We describe
the problem of continuous action generation in reinforcement learning, give for-
malization for the problem, and illustrate the results of the experiments.

In order to deal with continuous action generation in reinforcement learning,
we need to have a random vector generator for an arbitrary probability distri-
bution. As being explained in Section 6.2, the problem is reduced to solving a
non-linear (partial) differential equation. The implementation as described in
Chapter 4 of neural networks learning differential data is modified to solve the
differential equation and the experiments are conducted.

6.1 Problem of Continuous Action Generation
in Reinforcement Learning

In this section, we describe the problem of continuous action generation in
reinforcement learning and the necessity of a random vector generator for an
arbitrary probability distribution.

In general, it is difficult to handle the continuous action space in robotics and
hence in reinforcement learning. For the cases where there are mathematical
models of environment, those mathematical models are utilized to deal with
continuous action space. But it is ordinarily not possible to have mathematical
models of environment for the cases in robotics.

Reinforcement learning can provide the probability distribution over the
continuous action space for the controller to produce an action. The problem
is with existence of appropriate random vector (action) generators for the given
arbitrary probability distribution.

7
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Common techniques used in reinforcement learnings include the followings
and the combinations of the followings.

e Quantize continuous action spaces. Then apply discrete methods. (See
the beginning of Chapter 4 of [37] and the acrobat problem in [26])

e Use a parameterized probability distribution such as Gaussian distribu-
tions for continuous action generation. Then adjust parameters, such as
the mean and the deviation in Gaussian distribution case, to fit the given
probability distribution. (See Section 4.3 and 4.4 of [14])

Those methods have the following shortcomings.

Quantization of continuous action spaces needs knowledge of characteristics
of the problem beforehand. Therefore it is not applicable without introduc-
ing arbitrariness of the system integrators. The quantization also introduces
so-called “the curse of dimensionality,” meaning that its computational require-
ments grow exponentially with the number of state variables. Since better
approximation of a given probability distribution needs finer quantization that
requires more variables, it is vulnerable to “the curse of dimensionality.”

We want to use continuous action spaces as is, to avoid the above short-
comings. As mentioned above, the problem with this approach is appropriate
random vector (action) generators for the given arbitrary probability distribu-
tion.

There are several methods known to generate random vectors for the given
probability distributions. These include the followings [32].

e Transformation method
e Rejection method

But they are not suitable to use in reinforcement learning for the following
reasons. The transformation method that transforms the uniform distribution is
only applicable to the probability distributions whose inverse functions of their
integrals are known. Since the probability distribution is not known in advance,
the transformation method is not directly applicable.

Though the rejection method does not have a preference for the probability
distribution, it takes time for generating the random vector because of rejections
of candidate vectors.

We propose to use neural networks learning differential data for random
vector generators as continuous action generators in reinforcement learning. We
use learning capability of neural networks learning differential data to realize
the inverse functions of the integrals of given probability distributions as in the
transformation method. This allows us to have the random vector generators
necessary in reinforcement learning, which can adapt to an arbitrary probability
distribution and which can generate random vectors fast enough.

6.2 Formalization

In this section, we give formalization for the problem of continuous action gen-
eration and show how neural networks learning differential data is applied to
the problem.
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As described in the introduction of this chapter, the problem of continuous
action generation is formalized as follows.

Problem 6.1 Realize a random wvector generator for an arbitrary probability
distribution p(v)dv of R'. dv is Lebesgue measure of R' and v is an R'-valued
variable.

Problem 6.1 is reduced to solve the following problem in the one-dimensional
case.

Problem 6.2 Find the inverse function F~(u) of F(v) that satisfies F(v) =
[ p(v)dv.

If this inverse function is obtained, we can realize the desired random vector
(number) generator as follows. First, we generate one random value from the
uniform distribution du on [0, 1] and then we give v = F~1(u) as the output.

This way, the uniform distribution du on the interval [0, 1] is transformed
by F~1(u) into the given probability distribution p(v)dv and the random vector
(number) generator for the given probability distribution p(v)dv is realized

This is the essence of the transformation method. The situation is easily
understandable by Figure 6.1 adapted from [32].

1

uniform
distribution ¢— — — — — — — — — —

(input)

transformed random
number (output)

Figure 6.1: Transformation Method: Outline of the transformation method is
shown in the figure.

If the probability distribution has the inverse function of its integral known
beforehand, the random vector generator is realized this way.

We solve Problem 6.1 by letting neural networks learn the function F~! in
Problem 6.2. We formalized the problem as the following including the multi-
dimensional cases. We treat the cases of arbitrary dimensions in this section
first. Then we derive the specific forms of €’s to give to the output layers of the
neural network in Sections 6.2.1, 6.2.2, and 6.2.3. for the general case, the case
of Fixed Value Outputs, and one-dimensional case respectively.
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We define n as the function defined by the neural network in use. Let v and
v stand for the variables of the input and output spaces respectively and Let w
stand for the weight vector of the neural network.

v =n(u) =n(w,u) (6.1)

We assume the domain (input space) and range (output space) of the function
have the same dimension. !

Let p(u) be a probability distribution on the domain. We take the uniform
distribution or other distributions with known random generators for p(z). Let
p(v)dv another probability distribution given on the range. Then what we want
is the neural network n that satisfies the following condition.

u

plo)do = 5u) |

‘ dv (6.2)

The condition is reduced to the following differential equation including Ja-
cobian.

vl _ p(u)
== 6.3
ou|  p(v) (6.3)
Replacing v = n(u) gives the following differential equation for n.
9 _
du | p(n(w))
In above two differential equations, | | stands for the determinant of the matrix.

If we can give a function n(u) which satisfies Equation (6.4), then we can
realize the random vector generator for the given p(v)dv. 2

For the rest of this section, we consider solving the differential equation of
Equation (6.4) by neural networks. The structure of neural networks is arbitrary
as long as the input space and the output space have the same dimension and
they have no loops.

In terms of neural networks learning differential data, solving Equation (6.4)
is interpreted as the following error minimizing problem. We take enough points
in the domain and find the set of weights of the neural network that minimize
the following error function. 3 4 °

Bt = g (|75 | - p(vf(g,)u»f (65)

LIf the range has the lower dimension than the dimension of the domain, then by adding
extra dimensions with fixed output we can make the range and the domain have the same
dimension.

2We need to consider relations between the boundaries of the domain and the range in
multi-dimensional cases. But this depends on each case and the consideration is omitted.

3The subscript pd of E stands for probability distribution.

4For the sake of simplicity and without loss of generality, we give the error function and
the following equations for the case with one point.

5As in Chapter 3, we introduce the learning constant « in the error function itself. We
denote this constant simply by « because this « is different from a%’s dependent on the
direction of derivative § in Chapter 3.
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We apply the gradient descent to this error function. Weights are updated
by the derivative of the error function with respect to w. So the update rule is
given by the following equation.

Bw = =3 Ba(w)
— 4 plw)  |on(w,u)
= (e ‘ o))
i on(w,u) p(u) i inwu

What we have to note here is that Equation (6.6) include terms like p(n(w, u))
and p’(n(w,u)). The neural network propagates backward €’s which is deter-
mined by the output n(u) of the network.

Note also that p(v) and p’(v) have to be given as functions beforehand in
order to calculate the error for the neural network since the error has to be given
for arbitrary v = n(w, ).

6.2.1 ¢€’s in the General Case

In this section, we derive the specific form of €’s in the general case to give to
the output layers of the neural network for backward propagation to calculate
the values of (6.6) in the framework of Chapter 3.

We denote by ez{ i € for the output unit of § net corresponds to the derivative
with respect to u; input unit of the k-th output unit of the value net. We denote
by €2, € for the k-th output unit of the value net. As in Chapter 3.7, these €’s
are the derivatives of the error function with respect to the input to the unit.

We also denote by Ay ;, the minor of the matrix, dn(w, u)/du removing k-th
row and i-th column. 8 Then the following holds.

on(w,u)| Cvitk A On(w, )
‘7&‘ _%:( D A g (6.7)

Equation (6.6) consists of the part for back propagation of the value net and
the first order part for back propagation of the ¢ net.

Let ok (net) be the sigmoid function for the k-th output unit in the value
net. 7 Then 62 is given by the following.

0 ( O ‘an(w

&=\ pn(w) du

Multiplying by a,(:)(net) is needed since the definition of € is the derivative of
the error function with respect to the input net to the unit.
) (6.9)

6%7 i is given by the following.
In this case, we do not need to multiply it by a derivative of o (net) since the
units in the d net has the output same as the input to the unit.

) o 7 P n(w,w) oV (net)  (638)

p(n(w,u

ey = (=) tFa Ay, ( p(u) ‘8n(w,u)

p(n(w,u)) | du

SFor 1 x 1 matrix, we let A1 =1
“net is the input to the unit.



82 CHAPTER 6. CONTINUOUS ACTION GENERATION

6.2.2 ¢’s in the Fixed Value Output Case

In this section, we derive the specific form of €’s in the fixed value output case
to give to the output layers of the neural network for backward propagation to
calculate the values of (6.6) in the framework of Chapter 3.

By a fixed value output case, we mean a case in which the output of the
value network of the neural network is fixed for the input point. Such cases are
cases where some of input points on the boundary of the domain are mapped
into points on the boundary of the range.

In the fixed value output case, € is fixed for those points since the value out-
put of the neural network is fixed. Therefore it is a straightforward application
of the framework of Chapter 3.

Let the fixed value output of the neural network be vy and the learning
constant be 8. Then the error function for fixing the value output is given as
follows. &

Epp(w,u) = = B (n(w,u) —vy)° (6.10)

N | =

Since the value output is fixed, the derivation of €’s for Equation (6.5) is much
simpler. Instead of Equation (6.6), we have the following equation without value
parts for the update of the weights.

Aw = _%Epd(wvu)
- () () e

Therefore for the fixed output value case, € is derived only from Equation
(6.10) and is given by Equation (6.12). €], for the fixed output value case is
given by Equation (6.13) that stays the same as Equation (6.9).

& = Blop—n(w,u)) (6.12)
ezl,k = (=1)"Fa Ay, <p(np($,)u)) - ‘8n(8u;, ») ) (6.13)

6.2.3 €’s in the One-Dimensional Case

In this section, we derive the specific form of €’s in the one-dimensional case
where the input space and the output space is one-dimensional. In that case,
|On(w, u)/0u| = On(w,w)/0u and we let A;; =1 for 1 x 1 matrix. Therefore,
€' = €1, for the § net of Equation (6.9) is simplified as follows.

1_ o ﬁ(u) _ an(w,u)
c 7 (P(n(w,u)) o ) (6.14)

With this €', €® of Equation (6.8) for the value net in the one-dimensional
case can be expressed as follows.

8The subscript fp of E stands for fixed point.
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@ =¢ Z#U)u)v P (n(w,u)) oM (net) (6.15)

Especially when the probability distribution p(u) given to the input space is
uniform (i.e. p(u) = ¢), above Equations 6.15 and 6.14 are simplified as follows.

T c on(w, )
¢ = (s o) (6:19)
& = elm P (n(w,w)) o (net) (6.17)

6.3 Experiments on Learning to Be Random Vec-
tor Generators

In this section, we report the experiments on neural networks learning to be
random vector generator by using the results of Section 6.2.

The implementation as described in Chapter 4 of neural networks learning
differential data is modified to realize changing €’s of Equations (6.16) and (6.17)
in Section 6.2.3.

Here follows common conditions for the experiments.

The input space and the output space are both one-dimensional intervals.
The input space is [0,1] and the output space is [0.25,0.75]. The probability
distribution given to the input space is the uniform distribution (i.e. p(u) = 1).
The value outputs of the end points of the input interval, v = 0 and v = 1
are fixed to be n(0) = 0.25 and n(1) = 0.75 respectively. Therefore the results
of Section 6.2.2 are used for those end points of the input interval, while the
results of Section 6.2.3 are used for the inside points of the input interval.

Fixing the Outputs for the End Points In this paragraph, we show that
there is no problem in fixing the outputs for the end points of the input interval.

Let p(v) be the probability distribution on the output interval [a,b]. Then
the following holds.

/b p(v)dv =1 (6.18)

In the case of the uniform distribution on the input interval [0, 1], for the
neural network n(u) that satisfies Equation (6.4), the following holds.
dv 1 1
= - _ - 6.19
du~ p00) ~ pn(w) (0:19)

Fixing the output of the end points and learning to satisfy Equation (6.4)
are not contradictory as the following equation shows.

1 1 du n(1)
1 z/ du :/ —dv :/ p(v)dv (6.20)
0 o dv n(0)

Since p(v) is a probability distribution, n(0) = a and n(1) = b have to hold for
the right hand side of the equation to be 1.
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6.3.1 Gaussian Distribution Case

In this section, we report the experiments on Gaussian distribution case.
We give the following (part of) Gaussian distribution on the output interval
[0.25,0.75].

p(v) = 2.42261 ¢~ 10(v—0-5)* (6.21)

The constant 2.42261 is used to make the integral of p(v) on [0.25,0.75] to be
1. The graph of p(v) is given by Figure 6.2.

0.3 0.4 0.5 0.6 0.7

Figure 6.2: Gaussian Distribution: The graph of p(v) = 2.42261 e~10(v=0.5% 5p
the interval [0.25,0.75] is given.

We use three-layer perceptron with one unit in the input layer, sixteen units
in the middle (hidden) layer, and one unit in the output layer and we make the
neural network to learn to be a random vector (number) generator for this p(v)
following Section 6.2.

Learning constants are set such that o = 0.1, § = 0.175, and the momentum
is set to 0.2. We take eleven training points including the end points of interval,
each separated for 0.1 on the interval [0, 1].

The results are given in Figures 6.3, 6.4, and 6.5 after 100,000 epochs of
learning.

The total sum of the value error (Equation (6.10)) for the two end points is
9.72601 x 10~ 7 and the total sum of the first order error (Equation (6.5)) for all
eleven points is 5.20717 x 1074,

The results indicate that the neural network learns to be a random vector
(number) generator quite successfully.
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/

Figure 6.3: Value Output (Gaussian Distribution Case): We use three-layer
perceptron with one unit in the input layer, sixteen units in the middle (hidden)
layer, and one unit in the output layer to make the neural network to learn to
be a random vector (number) generator for the Gaussian distribution. Learning
constants are set such that o = 0.1, § = 0.175, and the momentum is set to
0.2. We take eleven training points including the end points of interval, each
separated for 0.1 on the interval [0, 1]. The graph shows the value output of the
neural network after 100,000 epochs of learning. The graph corresponds to the
graph u = F(v) in Figure 6.1 with u-axis and v-axis reversed.
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Figure 6.4: First Order Output (Gaussian Distribution Case): We use three-
layer perceptron with one unit in the input layer, sixteen units in the middle
(hidden) layer, and one unit in the output layer to make the neural network to
learn to be a random vector (number) generator for the Gaussian distribution.
Learning constants are set such that « = 0.1, § = 0.175, and the momentum is
set to 0.2. We take eleven training points including the end points of interval,
each separated for 0.1 on the interval [0, 1]. The graph by the solid line shows the
first order output of the neural network after 100,000 epochs of learning. The
graph by the broken line shows the inverse of the Gaussian distribution density
at the point of the value output of the neural network. (i.e. 1/p(n(w,n))
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Figure 6.5: Probability Distribution Learned (Gaussian Distribution Case):
The graph of the probability distribution learned by the neural network af-
ter 100,000 epochs is given by the solid line. The graph is the parametric plot
of {(n(u),1/(0n(u)/0u) | 0 < u < 1}. The graph by the broken line is of the
target probability distribution and is same as the one in Figure 6.2.
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6.3.2 Two-Peak Distribution Case

In this section, we report the experiments on two-peak probability distribution
to see how well the neural network performs for a more complex case than one
of Section 6.3.1.

We give the following two-peak distribution on the output interval [0.25, 0.75].

p(v) 2.81763 (6740(%0.425)2 10.65 67200(1;70.675)2)

2.81763 ¢~ 100=0429)" 11 83146 ¢ 2000675 (6.22)

The constant 2.81763 is used to make the integral of p(v) on [0.25,0.75] to be
1. The graph of p(v) is given by Figure 6.6.

0.3 0.4 0.5 0.6 0.7

Figure 6.6: Two-Peak Distribution: The graph of p(v) =
2.81763 (e~40(w=0425" 4 (65 =200v=0675)%) on the interval [0.25,0.75]
is given.

We use three-layer perceptron with one unit in the input layer, sixteen units
in the middle (hidden) layer, and one unit in the output layer and we make the
neural network to learn to be a random vector (number) generator for this p(v)
following Section 6.2.

Learning constants are set such that o = 0.1, = 0.005, and the momentum
is set to 0.2. We take eleven training points including the end points of interval,
each separated for 0.1 on the interval [0, 1].

The results are given in Figures 6.7, 6.8, and 6.9 after 10,000,000 epochs of
learning.
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The total sum of the value error (Equation (6.10)) for the two end points is
4.59249 x 10~7 and the total sum of the first order error (Equation (6.5)) for all
eleven points is 6.07166 x 1073.

Even though a large number of learning epochs are needed and the graph
still deviates from the ideal, the results indicate that the neural network can
learn to be a random vector (number) generator even for a complex probability
distribution.

-

]

Figure 6.7: Value Output (Two-Peak Distribution Case): We use three-layer
perceptron with one unit in the input layer, sixteen units in the middle (hidden)
layer, and one unit in the output layer to make the neural network to learn to
be a random vector (number) generator for the two-peak distribution. Learning
constants are set such that o = 0.1, § = 0.005, and the momentum is set to
0.2. We take eleven training points including the end points of interval, each
separated for 0.1 on the interval [0, 1]. The graph shows the value output of the
neural network after 10,000,000 epochs of learning. The graph corresponds to
the graph u = F(v) in Figure 6.1 with u-axis and v-axis reversed.
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Figure 6.8: First Order Output (Two-Peak Distribution Case): We use three-
layer perceptron with one unit in the input layer, sixteen units in the middle
(hidden) layer, and one unit in the output layer to make the neural network to
learn to be a random vector (number) generator for the Gaussian distribution.
Learning constants are set such that « = 0.1, § = 0.005, and the momentum is
set to 0.2. We take eleven training points including the end points of interval,
each separated for 0.1 on the interval [0, 1]. The graph by the solid line shows the
first order output of the neural network after 10,000,000 epochs of learning. The
graph by the broken line shows the inverse of the two-peak distribution density
at the point of the value output of the neural network. (i.e. 1/p(n(w,n))
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Figure 6.9: Probability Distribution Learned (Two-Peak Distribution Case):
The graph of the probability distribution learned by the neural network after
10,000,000 epochs is given by the solid line. The graph is the parametric plot
of {(n(u),1/(0n(u)/0u) | 0 < u < 1}. The graph by the broken line is of the
target probability distribution and is same as the one in Figure 6.6.






Chapter 7

Other Possible Applications

In this chapter, we describe two more possible applications of neural networks
learning differential data, solving differential equations and simulation of human
arm movement. For those examples, neural networks with capabilities to learn
differential data can take advantage of knowledge in forms of constraints on
differential data and easily incorporate such constraints into the learning of
training value data.

7.1 Differential Equations

In this section, we describe an application of neural networks learning differential
data, solving differential equations.

As practical applications of neural networks learning differential data, neural
networks learning differential have been applied to solving differential equations
[17, 4, 39, 16].

Lee and Kang [17] solve certain types of first order ordinary differential equa-
tions by using Hopfield-type neural networks to minimize the finite difference
equations.

In [4, 39, 16], differential equations along with boundary conditions are
turned into minimization problems. Those minimization problems are solved
using neural networks with global minimization procedures such as quasi New-
ton gradient descent algorithm.

We use essentially the same framework of mapping differential equations,
boundary conditions, and any other conditions into minimization problems by
neural networks in Chapter 6. But we employ our implementation of neural
networks learning differential data for the minimization procedure different from
the previous works.

Our algorithm is completely localized to each neurons and it leaves possibility
of parallel implementations for efficient executions, while global minimization
procedures are very difficult to implement in parallel ways. It is also very
difficult to apply global minimization procedures for adaptive problems. In
many learning problems in robotics and others, what has to be learned, changes
dynamically. In the problem of continuous action generation in reinforcement
learning described in Chapter 6, the probability distribution given in the output
space changes as the learning proceeds and so does the differential equation for
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the neural network to satisfy. In such adaptive cases, our algorithm provides
more gradual way of learning than global minimization procedures.

The difficulty with applications of neural networks learning differential data
to differential equations is that of “moving targets.” To minimize the square
error of differential equations, neural networks need to propagate backward the
errors, which depend on the outputs of the neural network. That is so even
for linear differential equations. That means neural networks need to learn or
to adapt to something like moving targets. This is totally different situation
from the standard back propagation algorithm where the training data is fixed.
Therefore there is difficulty of moving targets added to learning differential data.

In the following two sections, we give formalization for an application of neu-
ral networks to solving differential equations and applications from meteorology.

7.1.1 Formalization

We give substantially wider and more general formalization than one in [4].
With this formalization, we can have a unified and continuous view.

Let n be the function defined by a neural network, D be any linear or non-
linear differential operator D? and €2; be any set of points in the input space of
the neural network. We consider the following set of constraints on the neural
network.

Din(z) =0 forz € Q;, i=1,...,m (7.1)

We do not make any distinction between differential equations, boundary
conditions, and any other conditions as long as they are expressible in the above
forms. We give several examples that can be expressed in the above forms.

For example, a Poisson equation on a domain €2 can be expressed as follows,
where f is a function given on .

An(z) — f(z) =0 forz € Q (7.2)

A boundary condition on the boundary 92 of a domain 2 can be expressed
as follows, where B is a differential operator and g is a function given on 9f).

Bn(z) —g(z) =0 forz € 0Q (7.3)

In the case where €; is a set of finite points and where D? has the following
form, then it is reduced to the constraints given in the standard back propaga-
tion for the target function f on the points in €2;.

n(xz) — f(z) =0 forz € Q= {p1,...,pn} (7.4)

In the case where §); is a set of finite points as above and where D? has the
following form, then it is reduced to the constraints for neural networks learning
differential data considered in Chapter 3 for the target function f on the points
in Ql

aN(&)n aN((S)f
oz T oy

(2)=0 forz € Q; ={p1,....,0n} (7.5)

Learning algorithm of neural networks for constraints Equation (7.1) works
as follows.
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First, we take finite points {p; 1,...pi; } from the each set ;. Those points
should be taken to represent the set 2; appropriately according to some measure.
With learning constants a; !, we define the energy function from Equation (7.1)
for the neural network as follows. 2

li

71 2
E= ZE o ) |o=p: ) (7.6)

i=1 Jj=1

Let D}'ﬁ s be the derivative of D’ with respect to the k-th unit in the J net (the
value net when § = 0.).

We update each weight w of the neural network with the update value Aw
according to the gradient direction of the energy function (Equation (7.6)) with
respect to the weight as in the following equation.

oF
Aw = —— 7.7
S (7.7)

Without any loss of generality, we can assume there are only one ¢ and one
j in Equation (7.6). Then Equation (7.7) can be modified as follows. (We omit
|z=p; ; in the equation for the readability.)

B oE i 0 (Dln(x))
Aw = _%*_%D (x)T
- ; 8 in(z)) 0x°
- T 6Z>0 Din T w (7.8)

In order to calculate these update values for weights, we create value net
and ¢ nets (Section 3.3) up to the highest differential order used in Equation
(7.1).

Since the back propagation algorithms given in Section 3.7 are linear with
respect to €’s given to the output layers, we use the same algorithm to calculate
the weight updates (Equation 7.8) just by replacing the €’s for the output layers.

While the €’s for the output layers of standard neural networks learning
differential data are given in Section 3.7.1), the €’s for the output layers are
given in general differential cases are given as follows.

First, we give €’s for the value net. Let o be the sigmoid function of the
k-th unit in the output layer of the value net. Then 62@,1 for the unit is given
by the following equation.

dDn(z)

92,0 le=p.; Ok (7.9)
k

624%,]' =y Din(x)|wipi,j

ei’pi,j for the k-th unit in the § net (§ # 0) is given by the following equation.
dD'n(x)

ot e (7.10)

624%,]' =y Din(x)|wipi,j

Then we let the value net and the ¢ networks of the neural network propagate
forward at each point p; ; of the set {p;; | i =1,....,m, j=1,..L;}.

1Tt is possible to change «; for each p; ; with different j.
2The power 2 can be changed to any positive real number. It is even possible to use a
function in place of 2 as long as the function is differentiable and monotonically increasing.
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These two equations, Equations 7.9 and 7.10, constitute the main part of
the formalization. Weight updates are calculated by backward propagation of
those €’s.

If we have further special conditions such as the situation in Section 6.2.2
where the value output is fixed and where the coeflicients of differential equations
depend on the value output, those can be incorporated into considerations as
Section 6.2.2.

As one can see from Equations 7.9 and 7.10, €’s depend on the outputs of
the value net and the § nets even for linear differential equations. This is the
difficulty, which is pointed out as “moving targets.”

7.1.2 Applications from Meteorology

In this section, we give two possible applications from meteorology. We believe
the problems from meteorology have a good mixture of differential equations
and value data available for neural networks learning differential data.

The first application is about the temperature and the wind velocity. The
temperature T and the wind velocity u satisfy the following PDE, where ¢ stands
for the time.

a—T+(u-V)T=O (7.11)

ot
It is very costly to add observation points for the temperature and the wind
velocity. For this problem, we can use a neural network with time and coordinate
as input and temperature and wind velocity as output. With such a neural
network, we can use both the data from the existing observation points and the
constraint given by the partial differential equation, Equation (7.11), for the
neural network to learn.

Another application is about the wind field. In meteorology, a method called
MASCON (Mass-Consistent) is used to obtain the global information of the
wind field from rather few (from several to several hundreds) observation points
[35, 3]. Even though it is necessary to solve a complete fluid equation in theory,
this method makes it possible to solve the problem only with observations of
wind field at observations points and the constraints of mass consistency given
by the following equation.

Vi(z) =0 (7.12)

This will be one of perfect applications of neural networks to differential
equations as described in Section 7.1.1 and we consider to apply it in the near
future.

7.2 Simulation of Human Arm Movements by
the Minimum-Torque-Change Model

In this section, we describe a possible application of neural networks learning dif-
ferential data to simulation of human arm movements by the minimum-torque-
change model (see [38]). This is one of applications that require differential data
of order higher than or equal to third.
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The objective of such models is to explain for trajectory formation in human
arm movements. Uno and Kawato [38] proposed a model that the trajectory
gives minimum of the following value, where m stands for the number of joints
involved in the motion and 7; stands for the torque generated at the i-th joint.

A

In [20], Maeda et al. proposed a cascade neural network model for such
simulation. This model uses one neural network for each discrete time step,
which produces expected torque values at that time step. Then those neural
networks are connected to produce difference between expected torque values
of consecutive time steps to approximate the differentiation of torque, which in
turn is used for the neural networks to learn to minimize the difference.

If we use a neural network with elapsed time as input to the network and
with coordinates of arm positions as output, we can implement the minimum-
torque-change requirement as a third-order differential constraint on the neural
network. If we consider the 2-links in a plane, 71 and 75 and are given by the
following equations [38], where 6, is the position (angle) of i-th arm and M;, L;,
Si, I;, Bi, and [; are physical constants of i-th arm.

7 = (I1 4 I+ 2MsL,S5cos by 4+ Mo(ly)?) 67

+(Iy + MyL1Ss cos 6y) 65

—M>L155(207] + 04) 05 sin 6 + B16; (7.14)
T2 = (I + MaL1Socosby) 0 + 1,04

+MsLy S5 (67)% sin 3 + Bo#l, (7.15)

Using these equations, we can calculate the integrand of Equation (7.13) from
the arm positions. We take enough points uniformly distributed along the time
line that is the input space of the neural network. The same formalization
proposed in Section 7.1 is used to minimize an approximation of Equation (7.13)
by the finite sum of the integrand on the chosen points. If there are other
constraints such as one that the arm has to be in a certain position at a certain
time, these constraints can also be incorporated by the formalization proposed
in Section 7.1.

In this way, the neural network used is much simpler and the constraint
of minimum-torque-change can be implemented more naturally by the neural
networks learning differential data.






Chapter 8

Higher Order Extensions to
Radial Basis Function
(RBF)

In this chapter, first, we summarize the formulae of Fourier transformation and
introduce the related parts of the treatment of RBF by Poggio and Girosi with
annotations necessary for our extension. Then we extend their results to the
cases with differential error terms. The extended results include minimizing
solutions, their best approximation properties, and C* denseness of the RBFs
with Green’s functions.

8.1 Formulae

Here we summarize the formulae of Fourier transformation and other used in
this chapter.
Fourier transformation F(f) of the function f is given as follows:

1

Inverse Fourier transformation F(f) of the function f is given as follows:

F(f) = / e f () (8.1)

(n 1 Trw
Flg) = (\/2_777)”/6 g(w)dw (8.2)

The integration of Gaussian functions from —oo to oo is given as follows:

/ o~ gy = V2T (8.3)
g

—00

8.2 Treatment of RBF by Poggio and Girosi

In [31], Poggio and Girosi give relationships of Radial Basis Function with reg-
ularization theory. We summarize the related parts in this section.

99



100 CHAPTER 8. HIGHER ORDER EXTENSIONS TO RBF

Poggio and Girosi give detailed treatment of Radial Basis Function (RBF) in
[31] and [8]. In [31], Poggio and Girosi describe relationships between regular-
ization theory and Radial Basis Functions. Namely they show that minimizing
solutions for squared value errors and a smoothing term have the form of RBFs.

In [8] Girosi and Poggio define the concept of best approximation property
as “an approximation scheme has the best approximation property if in the set
A of approximating functions there is one that has minimum distance from any
given function of a larger set ®.” They showed that radial basis functions have
the best approximation property since they are a linear sum of finite functions.
They also showed that multilayer networks with sigmoid functions do have the
best approximation property.

In the same paper [8] they showed the linear combinations of Gaussian func-
tions are C° dense in continuous functions on a compact metric space.

In the rest of this section, we describe their derivation of the minimizing
solutions. They give minimizing solutions for the following.

H[f] = Z{(yi = f(@:)* + NI PFII? (8.4)

Here P is a constraint functional, which is usually a differential operator and
lambda is the regularization parameter.

The minimizing solution is given by Equation (5) in Section III of [31] as
follows.

1N
fl@) =+ > (i — f(x:))Gla; i) (8.5)
i=1

Here G(z;y) is the Green’s function of PP where P is the adjoint of the differ-
ential operator P. Therefore G(z;y) satisfies the following equation.

PPG(x;y) = 6(z —y) (8.6)

The derivation of the above equation (8.5) is given as follows. By a varia-
tional method applied to Equation (8.4), minimizing solutions must satisfy the
following.

1
PPf(z) =Y (i = f(2))b(z — ;) (87)
i=1
The integral transformation with the kernel as the Green function G(zx;y) pro-
duces Equation 8.5.

If P is a translation- and rotation-invariant operator, then G(z;y) = G(||z—
y||). Therefore minimizing solutions (Equation (8.5)) are linear combinations of
radial basis functions.

Especially if P is chosen as follows,

O_Qm

PP = Z(—1)mm!2mv2m (8.8)
m=0

then the solution for the following equation (8.9) is given by Equation 8.10 where
n is the dimension of the input space. We define G(z;y) = G(z — y) using G.

PPG(z) = 3 (—1)™ o

m=0

VG (x) = 6(x) (8.9)

ml2m
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G(z) = o™e (7°/207) (8.10)

The above is derived as follows. The Fourier transformation applied to the
both sides of Equation (8.9) will give the following.

oo 2n e o.2n
FO (=" n,QnVQ"G( z)) = Z(—l)"n,Qn(—f)"f(G(x))
n=0 n=0 ’
— “F F(G(2)) (8.11)
F(z) = @0 =1 (8.12)

Therefore the next equation follows from Equation (8.9)).

F(G(x) =e 2 (8.13)

Lastly, by applying the inverse Fourier transformation, G(x) is obtained as
follows.

= one (@207 (8.14)

8.3 Minimizing Solutions for the Cases with Dif-
ferential Error Terms

We extend the results of [31] on RBF to the cases with differential error terms.
We give the minimizing solution for the following functional H with the regu-
larization parameter A. !

Z{ + (Y = Vf(@)*} + PSP (8.15)

Here o/, = {y/*, ...,y!"}, Vf = {8f/dx",...,0f /0x"}, and n is the dimension of
the input space.
This equation (8.15) can be rewritten as follows.

= [ Xt s@npst - (@ - Vi) ol -}

A Pf2dz
(8.16)

1 Minimizing solutions can be obtained the same way for the cases with the higher order
differentials.
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We apply the variational method to the equation.
J -t - stenste - zapas

~{W - Vi@)s@ — )} vof

+A< Pf,Pof >}d:ﬂ

SH(f)

/ {Z ~{(: — F@)3( =)} + V{0 = Vf(2)d(a —2:)}

+)\(15Pf)}6fdx
(8.17)

<, > stands for an inner product of a vector space.
Therefore the minimizing solution f must satisfy the following equation.

PPy =5 3" {{li = 1@ =2} = V{7, — VI@)ie — )} } (318)

As explained in the previous section 8.2, we apply the integral transformation
with the kernel of Green’s function satisfying Equation (8.6) to the both sides
of Equation (8.18). Then we obtain the minimizing solution as follows.

1@ = 33— f@)Gw) + @~ VI @)TC @)} (319

As in the previous section 8.2, if we choose P as the operator satisfying
Equation (8.8) , the Green’s function G(x; y) for PP is given by Equation (8.10).
In this case, VG(z;y) is given by the following equation.

VG(ziy) = — (x(;y) oe~ (T-)?/20° (8.20)

Therefore Equation (8.19) for the minimizing solution f can be rewritten as
follows for this case.

f@) = 3 {(yi—f(wi))O"e

xome 307 (8.21)

By determining the values for {f(x;)}; and {f’(x;)}; to satisfy the above equa-
tion on the points {z;};, the function f is fixed.

It is essentially the same even when the differential error terms are of orders
higher than one. For a general P, there are differentials of the Green’s function
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corresponding the error terms. For the P satisfying Equation (8.8), the mini-
mizing function is the additions of the product of (z — 2;)° and the difference
between the teacher signal and the value of the function at the point. 2

8.4 Best Approximation Property

By fixing the number of sampling (data) points, the set of functions of the form
given by Equation (8.21) has the best approximation property since the function
is represented by the linear combination of finite functions.

8.5 (! Denseness

Section 8.3 gives the minimizing solution of the form by the linear combination
of the products of first-degree polynomials and Gaussian functions. Therefore
we predicted that the set of linear combinations of the products of first or general
degree polynomials and Gaussian functions is C' dense in the C'! functions on
a compact set. But we found out that a stronger fact holds. The set of linear
combinations of Gaussian functions with a fixed variance is C' (I > 1) dense in
the C' functions on a compact set. This section proves the fact.

First, we extend the result in [8] by Poggio and Girosi that “the set of
linear combinations of Gaussian functions with arbitrary centers and arbitrary
variance.” We show that “the set of linear combinations of Gaussian functions
with arbitrary centers and a fized variance.” This result goes in accordance
with the regularization theory. As we have seen in Section 8.2, the minimizing
solution for the operator P satisfying Equation (8.8) is a linear combination of
Gaussian functions with a fized variance, which is determined by P.

In order to prove that linear combinations of Gaussian functions with a
fixed variation are C° dense in C° functions, we need to show the following for
a compact set K C R.

[{e~@=9%/2 | b e R} = CO(K) (8.22)

Here [F] is the closure of F'. This can be proved by the Stone’s theorem as
follows.
We have the following two equations.

e—(x—b)2/2+e—(x+b)2/2 _ 6—%(9c2—2b3c+b2)+6—%(x2+2bx+b2)
2 22
= e*%e*T(ebx + e )
2 22
= 67%6772C08h(bx) (8.23)
e~ @=b)/2 _ o= (= 40)*/2 6_%6_§28inh(b$) (8.24)

Therefore proving C” denseness turns into proving f (x)eé is included in [{cosh(bz) | b €
R} U {sinh(bx) | b € R}] for Vf.

2See the definition (Equation 3.2). § is the one corresponding to the differential operator
of the error term.
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We use the Stone’s theorem (c.f. [8] Theorem B.1) for the set [{cosh(bx) | b €
R} U{sinh(bx) | b € R}| above. The constant function is included as the case of
b= 0. It is also obvious that there exists a function for any two distinct points
such that the function can distinguish these points. The next equation and likes
show that the set is an algebra,

1
cosh bz cosh b’z = 3 [cosh(b + b')x + cosh(b — b')x] (8.25)

The Stone’s theorem can be applied and the C° denseness is proved.

Next we prove that linear combinations of Gaussian functions with a fixed
variation are C' dense in C' functions, As we have proved [{e~(@=*/2|p ¢
R} = C°(K) and e~(@=9?/2 can be approximated {(z— b)e*(‘”*b)2/2 | b e R}
in CY(K).

By absorbing the increments to x by b, finite sum approximation of the
integration can be rewritten as follows.

e~ (@=b)?/2 _ —/x (m—b)e*(z*b)Q/de
xOO
~ —/ (x—b)e_(x_b)zmdm
-M
N
~ N ai(x - by)e (0b2 (8.26)
i=1

This leads the inclusion in the center of the next relation.
COUK) =[{e" @2 |be RY] C [{(x —b)e~ @ /2 | b e R} c C°(K)(8.27)

The equation on the left is from Equation (8.22) and the inclusion on the right
is apparent.
Hence,

[{(z —b)e"@D*/2|p e R}] = CO(K) (8.28)

When f € CY(K) is given, there is g € [{(x — b)e’(z*b)2/2|b € R}] which
is close to f/ in CY. Since h(z) = [g(z)dz € [{e~@=b)°/2|p ¢ R}] and since
K is compact, h is close to f in C! if we take g close enough to f’. Therefore
[{e=(@=87/2|b € R}] = C'(K) is shown. For the cases of I > 1, the repetitions
of the same arguments show [{e_(”_b)2/2|b € R} = CYK).

In case of multi-dimensional input spaces, it can be proved sim{larly that
{e=(@0°/2 | § ¢ R"} is C°-dense. Then by showing {z1...z,e”@0/2 | § €
R"} is C%-dense and by approximating the following integration with a finite
sum

o f

0x1..0x,

flz,y) = dxy...dzy, (8.29)

C'-denseness can be proved.
Similarly C!-denseness (I > 1) for one- and multi-dimensional cases can be
proved.



Chapter 9

Conclusion

In this chapter, we present a summary of contributions, a discussion of limita-
tions, and suggestions for future works.

9.1 Contributions

In this dissertation, we investigated the framework to introduce constraints on
differential data into neural networks as learning systems.

First, we introduced architecture and an algorithm for neural networks learn-
ing differential data of arbitrary order after a summary account of multilayer
perceptrons. This completely localized algorithm enable multilayer perceptrons
learn differential data of orders not only first but also higher than first. Such
algorithms were previously non-existent.

Secondly, we described an implementation of the architecture and the algo-
rithm above as computer programs and the preliminary experiments on neural
networks learning differential data using the implementation. In the experi-
ments, we showed that neural networks actually converge on differential data
up to the third order for a non-trivial target function. Since no one has ever
shown that the algorithm truly converges on differential data of orders higher
than first, establishing the fact should help promote the application of neural
networks learning differential data greatly.

Then we analyzed neural networks learning differential data. We reported
the analyses such as comparison with extra pattern scheme, how learnings work,
sample complexity, effects of irrelevant features, and noise robustness. These
analyses should help judge when to use the neural networks learning differential
data instead of other options.

We also described an application of neural networks learning differential data
to continuous action generation in reinforcement learning. This application is
actually an application of solving differential equations. The details of how
neural networks are applied to solving differential equations and the results of
experiments should help encourage the applications of neural networks learning
differential data to other kinds of differential equations.

Thereupon we identified two more possible applications differential equations
and simulation of human arm movements.

Finally, we described higher order extensions to radial basis function (RBF)
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networks, another type of neural networks other than multilayer perceptrons.
We gave minimizing solutions for the cases with differential error terms, best
approximation property of the above solutions, and a proof of C! denseness of
RBF networks.

This dissertation as a whole lay the foundations for applications of neural
networks learning differential data as learning systems. We gave detailed ac-
counts of their architecture, algorithm, implementations, and applications in
order to help promote their applications. The analyses provided should also
help judge when to use the neural networks learning differential data instead of
other options. The completely localized algorithm and its implementations will
open up the whole range of possibilities of applications with their efficiency and
their ability to handle differential data of arbitrary order.

9.2 Limitations

In this section, we describe the limitations of the results presented in this dis-
sertation.
The limitations are followings:

e Analyses of neural networks learning differential data of orders higher than
first are unexplored.

e Comparisons with other algorithms and methods that can incorporate
knowledge in the forms of constraints on differential data are unexplored.

e The choices of parameters such as numbers of units in hidden layers, learn-
ing constants, and momentum are arbitrary, mostly by trial and error.

e The implementation is limited to layered neural networks with full con-
nections between layers, while the algorithm itself is not limited to the
specific architecture of neural network.

e Statistical aspects are largely unexplored in Chapter 4

9.3 Future Work

In this section, we provide suggestions for future work in the research area of
neural networks learning differential data.

Even though we have shown the possibilities of practical applications for
neural networks learning differential data, there are still items to be explored to
make them really useful tools. These items include the followings:

e Development and implementation of algorithms or methods that guaran-
tee (to some degree) the stable convergence, especially development of
appropriate choosing methods of parameters.

e Comparisons with other algorithms and methods that can incorporate
knowledge in the forms of constraints on differential data.

e More analyses, especially on learning with differential data of higher orders
and statistical aspects of the learning
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e Framework and implementations of neural networks to handle general dif-
ferential equations

e More applications of neural networks learning differential data such as
those described in Chapter 7
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