
Semantic Middleware for the Internet of Things

Zhexuan Song, Alvaro A. Cárdenas, Ryusuke Masuoka
Fujitsu Laboratories of America, Inc.

{zhexuan.song, alvaro.cardenas-mora, ryusuke.masuoka}@us.fujitsu.com

Abstract

The Internet of Things (IoT) refers to extending the
Internet to devices such as home appliances, consumer
electronics, and sensor networks. As multiple heteroge-
neous devices attempt to create area networks, one of
the major challenges is the interoperability and com-
posability of their services. The traditional way to ad-
dress interoperability is to define standards; however,
there are many standards and specifications that are
incompatible with each other. In this paper we propose
an application layer solution for interoperability. The
key idea is to utilize device semantics provided by ex-
isting specifications and dynamically wrap them in our
middleware into semantic services. Next, with the help
of Semantic Web technologies, users can create and
then execute complex tasks involving multiple hetero-
geneous devices. We demonstrate how our framework
automates interoperability without any modifications to
existing standards, devices, or technologies, while pro-
viding to the user an intuitive semantic interface with
services that can be executed by combining devices in
the network.

1 Introduction

The Internet of Things is expected to revolutionize
the way we interact with devices at work, home, or
public spaces. By providing network connectivity to
embedded devices, everyday objects will be able to in-
teract with each other, introducing new services and
opportunities to end users.

For example, a typical Home Area Network (HAN)
can connect a set of devices such as computers, print-
ers, streaming clients, and set top boxes. The diversity
of devices connected to these networks is expected to
increase rapidly in the next couple of years due to the
global interest in smart energy devices such as refrig-
erators, thermostats, and smart meters.

As new devices enter the market, the proliferation of
heterogeneous technologies pose serious challenges for
interactions among devices following different specifi-
cations.

To address service interoperability concerns, several
industry alliances and standard organizations have de-
fined interoperability standards such as Bluetooth [6],
UPnP [27], DLNA [11], SLP [12], Zeroconf [26] (Ap-
ple’s implementation of Zeroconf is called Bonjour [7]),
and Infrared [13].

Each standard plays an important role in facilitating
interoperability so that devices can successfully com-
municate with each other as long as they comply with
the standard. However, a standard alone can not solve
the interoperability problem where multiple standards
exist. For example, if a user takes a picture with a
mobile phone that supports Bluetooth, she will have
no trouble in printing the image on a printer that also
supports Bluetooth. However, if there is a UPnP-based
media player in the HAN, she may have trouble display-
ing the picture on the media player. Unfortunately, we
argue that there will never be a shortage of standards,
mainly because “Things” are diverse in many aspects.

In addition to having multiple incompatible stan-
dards, there is another problem with the current prac-
tice of standards-based interoperability approaches:
standards need to reach specific agreements on the in-
teraction of their services a priori; in other words, spec-
ifications have to anticipate all possible future scenar-
ios [21]. This makes it difficult to dynamically connect
an ever-growing (and changing) set of devices and ser-
vices in HANs.

A possible solution to these problems is to extend
standards with adapters to other standards. The draw-
backs of this idea are two-fold. First, one standard
has no direct control over other standards. Therefore,
whenever something changes in another standard, the
adapter has to be revised according to the modification.
Secondly, in order to support interoperability among N
standards, O(N2) adapters have to be created, which
is clearly inefficient. Another possible solution is to
introduce bridges among standards–e.g., a device that
can translate among different specifications; however,
it is not clear if this is a general approach and if it can
be used for composing multiple services.

To address some of these concerns, we implemented
a middleware based on semantic web technologies for
improving the automatic configuration of an heteroge-
neous network. Semantic Web approaches can provide

978-1-4244-7414-1/10/$26.00 ©2010 IEEE

(1) interoperability between devices and information,
(2) context awareness to applications, thus reducing
the search space for service discovery and composition,
and (3) meaningful information to users so they can
decide how to compose multiple services and improve
security and privacy decisions (semantic data can be
better understood by “things” as well as humans com-
pared to current protocol descriptions).

In particular, we propose the use of a semantic layer
where each device is mapped to a semantic service,
which we call the “Service Layer.” A service is associ-
ated with at least one semantic description in OWL-S
[20]. Services are the abstraction of devices and the ser-
vice layer shields users from the complexity of directly
dealing with devices of different standards and makes
it easy for users to compose services for accomplishing
complex tasks.

There are several benefits in this approach. First,
this solution is not a “single ultimate standard,” in the
sense that we are not requesting any additional work
from the device manufacturers: our support of various
standards is completely transparent. Its implementa-
tion is more efficient: we map different standards to
the same abstraction in the service layer; therefore, in
order to achieve the interoperability among N stan-
dards, only O(N) adapters have to be created. We also
provide an intuitive semantic interface so the user can
understand the multiple services that can be provided
by the network. Finally, our framework is easy to ex-
tend because the amount of work required to support
an additional standard is limited.

We have implemented our semantic-web framework
to show the interoperability and composability of ser-
vices of devices following non-IP Bluetooth and UPnP
specifications.

2 Background and Related Works

2.1 Service Discovery and Device Interop-
erability

Connecting a set of heterogeneous devices in a single
network can create interoperability challenges. Sim-
ply connecting two devices together via Ethernet or
WiFi, allows them to communicate using the IP pro-
tocol; however IP communication does not guarantee
that their services will be compatible. The most basic
way to address this problem is to install drivers. For
example, if you connect a printer and a computer to
a network, you may need to install the driver of the
printer in the computer.

This traditional solution will not scale if you con-
nect multiple heterogeneous devices to the network who
may want to access the printer. Not only is installing
a driver for each device burdensome, but drivers may
not even be available for embedded devices (“things”)
connected to the network.

Service-discovery protocols were introduced to ad-
dress these challenges. If two devices implement a given
service discovery protocol, they will be able to find the
services provided by each other and use these services.

Bluetooth, for example, provides a service discov-
ery protocol (SDP) which allows devices to discover
services supported by other devices and their associ-
ated parameters. When connecting two Bluetooth de-
vices, SDP is used for determining the Bluetooth pro-
files (e.g., video distribution profile, hands-free profile,
or the upcoming smart energy profile). Two products
implementing Bluetooth technology leverage standard-
ized profiles. If a cellphone and a printer are Bluetooth-
compatible, the printer will be discovered and config-
ured without additional drivers or software.

There are several other service discovery solutions
such as UPnP [27], Zeroconf [26], Jini [14], DLNA [11],
Infrared [13], and SLP [12]. While all these solutions
facilitate interoperability, a user will still have to un-
derstand which solution their products implement and
only purchase compatible devices.

2.2 Semantic Web and OWL-S

The semantic web has a different vision of the In-
ternet of Things. It is a vision of information that is
understandable by “things,” so that machines can per-
form more work involved in finding, combining, and
acting upon information on the web. These tasks are
well suited for enabling the interoperability of different
resources on the web. In fact, the semantic web has
been positioned as a way to achieve automated inter-
operability among diverse and complex web services.

Semantic web services are key components of the
semantic web. Their goal is to automate the discov-
ery and orchestration of services on the web. Semantic
web services provide semantic annotations to regular
services to facilitate a higher degree of automation on
how machines can interpret, discover, and compose dif-
ferent services.

OWL-S [20] is an Ontology Web Language (OWL)
used for describing semantic web services. An OWL-
S semantic service description consists of three main
parts: profile, process, and grounding.

The profile defines what the services do. It includes
the general information of a service (name, description,
semantic input/output) and it allows users to manip-
ulate the service (such as service composition) in the
semantic layer.

The process defines the input, outputs and parame-
ters. If a service involves multiple groundings, the work
flow (how the groundings are put together, what are
the input/output mappings between groundings, and
so on) is also defined in the process part.

The grounding part enables users to invoke services.
It includes the details that are required during the in-
teraction with the service (entry point and parame-
ters).

In addition to describing semantic web services,
OWL-S also enables service composition, where ser-
vices can be combined in order to perform an aggre-
gated task. Composition consists of two steps: synthe-
sis (selecting services that will participate in creating
the composed service), and orchestration (execution of
the composed service).

2.3 Related Work

Developing new middleware solutions for pervasive
computing is an active area of research [23]. The main
services that a middleware solution must provide are
context management [2], service configuration mecha-
nisms [17], and interoperability.

Conventional middleware technologies such as
CORBA, and Java-RMI achieve interoperability by
standardizing a common set of protocols and formats
in order to interact with other devices. In this paper
we are interested in allowing middleware to negotiate
the protocols used to interact with others at runtime.

An example of middleware in this class is Jini [14].
In Jini, each Java object can be a service, and the in-
formation about the services is maintained by a cen-
tral lookup server. There are many extensions for in-
teroperability in Jini. For example, Allard et al. [1]
introduced a framework to combine Jini with UPnP,
and Kasper and Buhrer [15] addressed how to discover
Bluetooth devices in Jini.

A similar technology (also based in Java) was pro-
posed by Rellermeyer et. al. [22]. In this architecture,
each device is loosely coupled as a software module
in R-OSGi (a specification for distributed design and
management of Java software modules). Their ap-
proach is independent of the network protocol, and
their extensions support services in Bluetooth with
other service discovery protocols based on TCP/IP.
Their architecture does not incorporate the semantic
information of the services and therefore it does not
provide the same flexibility that the semantic web of-
fers for the composition of services.

Web services are another popular approach for pro-
viding interoperability in embedded devices. The Ser-
vice Oriented Architecture (SOA) is a promising tech-
nology for integrating devices into a business IT net-
work. By running web services on smart objects,
SOA can create an Internet of services the facilitate
the interoperability and availability of these devices
with back end applications such as Enterprise Resource
Planning (ERP) systems. SODA [8] is a promising
approach for integrating SOA principles into the In-
ternet of Things. Similarly, the European project
SOCRADES [9] provides a middleware layer so that
web service-enabled devices can connect to enterprise
applications such as ERP systems.

The problems that SOA, SODA and SOCRATES
address are similar to the the ones the semantic web
tries to solve: the integration of many heterogeneous

devices through web services. The semantic web can
build on top of these services to enhance collaboration
with a formal description of concepts, terms and rela-
tionships between devices. These opportunities have
been recognized; for example, one of the fundamental
requirements for the SOCRADES project is the sup-
port of semantic web concepts [9], and as such, our
approach can be integrated as part of their architec-
ture.

The usefulness of the semantic Web in ubiquitous
computing has been recognized in several scenarios.
Lassila articulated how the semantic web has the
potential to solve the interoperability nightmare in-
troduced by ubiquitous computing [18]. The Perci
project [5, 24] uses semantic web services for describing
the services provided by physical objects. Their goal
is the composition of multiple services for mobile de-
vices interacting with the physical world–they do not
work on interoperability. The Ubiware project [16] is
another framework for using semantic web technolo-
gies in the Internet of things; however, they have not
studied the interoperability between different service
discovery protocols.

Non-middleware solutions for interoperability have
also been proposed in the literature. For example,
approaches for allowing interoperability between Blue-
tooth and UPnP include the work of Ayyagari [3], who
extended the Bluetooth discovery profile to support
UPnP, and Delphinato et. al. [10] who proposed a proxy
that presents Bluetooth services as a UPnP embedded
device containing one or more services. As we pointed
out in Section 1, it is not easy to develop a general
solution from these ad hoc efforts efforts.

3 Interoperability at Semantic Layer

We apply semantic web technologies to device ser-
vices in order to enable users to focus on the tasks they
want to achieve, rather than how to achieve them. To
this end we have created a framework called Task Com-
puting [25, 19]. In our framework, semantics fulfill two
roles: (a) it enables the manipulation of and the inter-
action with the computing environment at the seman-
tic layer so that users are able to define and execute
complex tasks without having to worry about the de-
tails of underlying devices and services. and (b) it is
a medium for interoperability between the underlying
disparate resources. Figure 1 illustrates the architec-
ture of the Task Computing framework.

In this paper we introduce our extensions to the
Task Computing framework by focusing on interoper-
ability at the semantic layer. We follow three steps:
first, middleware discovers various devices and gener-
ates the corresponding semantic services. Next, a se-
mantic user interface helps users to build tasks as ser-
vice compositions. Finally, the task is completed by
executing individual devices.

Device
Application E-service

Service ServiceService

Semantic

Service
Description

Semantic

Service
Description

Semantic

Service
Description

Discovery

Engine

Execution &

Execution Monitoring
Engine

Service

Composition
Engine

Management

Tools

Task
Computing

Client
Applications

Realization

Layer

Service

Layer

Middleware

Layer

Presentation

Layer

Content

Web-based
Client

Service

Semantic

Service
Description

Task Computing Environment

User

Figure 1. General architecture of Task Com-
puting Environment. Task Computing pro-
vides a common platform for interoperability
among devices, application, e-services and con-
tents. Modules that are related to this work in-
clude the discovery engine and the execution en-
gine at the “Middleware Layer.” For each stan-
dard, the corresponding discovery module wraps
devices into semantically described services at the
“Service Layer.” The Task Computing Environ-
ment (marked in a gray box) could be running in
the device that a user can directly control (such
as her smart phone).

3.1 Semanticizing Devices

Our first step is to create dynamically a semantic
service description through the standard that the de-
vice follows, and to represent the device as a semanti-
cally described service.

We create a new discovery module for each standard
(see Figure 2). The discovery module for a standard
works as follows. First, the module uses the discovery
protocol defined in the standard to locate the devices.
After a device is detected, the information of the de-
vice is extracted from the data obtained through the
protocol and an OWL-S semantic service description is
created internally. We are not creating the description
from scratch. Instead we maintain a “semantic ser-
vice description template repository” and store a set of
OWL-S templates for each known device type from the
standard. The template file is a valid OWL-S descrip-
tion except some fields which will be instantiated based
on the information we retrieved from the device. The
last job of the discovery module is to fill these fields
and register the “complete” semantic service descrip-
tion. We call this procedure “semanticization.”

As we mentioned in section 2.2, the grounding part

Figure 2. Device semanticization and execu-
tion: A Bluetooth enabled digital phone frame
and a UPnP based media center are semantically
described as services in Task Computing and al-
low the user to display the image from the digital
phone frame on the media center.

of a valid OWL-S semantic service description should
consist of all information that is required to execute
the service. In theory, once the values of the input pa-
rameters of the service are known, the service can be
properly invoked just based on the grounding part. In
OWL-S, unfortunately, only WSDL grounding is for-
mally defined and there is no support for other stan-
dards. Therefore, we extend the OWL-S grounding
definition by introducing new grounding support for
device-specific information. Due to the space limita-
tion, we do not list these details here.

3.2 Building Tasks

During the second step, Task Computing framework
will help a user to build tasks out of available services.
Some of the functionalities provided are: (1) Based on
the semantic input and output types of the services, the
framework will check the validity of possible composi-
tions. (2) When some parts of the task are determined,
services that can not be further added into the task will
be eliminated, thus limiting the search space. (3) As
a user adds a new service into the task, the framework
will find appropriate places to put the service within
the task. (4) The framework allows a user to input
keywords, then suggests the possible tasks, and sorts
the tasks based on the preferences of the user.

3.3 Device Grounding

After a user constructs a task, the last step is to
execute it. A task is a workflow of services. (Figure

4 shows a task example.) During the task execution,
each service will execute in the order defined in the
workflow. When the execution of one service is done,
based on the flow, the output is transferred to other
services.

There are three steps involved in executing a ser-
vice: (1) marshalling service inputs to parameters, (2)
invoking the corresponding realization (device, web ser-
vice and so on), and (3) unmarshalling parameters to
service outputs. Among them, step one and three are
optional.

The execution engine of Task Computing supports
multiple execution modules, such as the WSDL based
web service execution module, the REST based web
service execution module, and others. We also provided
additional execution modules for different standards,
which will be introduced in section 4.3.

4 Implementation

Our solution leverages semantics readily available
explicitly and implicitly in each standard. To date,
none of the standards adopt semantic web technolo-
gies for its device description, but nonetheless, device
semantics are abundant in each technology. How the
semantics are given differs from one technology to an-
other and their semantics are not always given in a
machine-processable way.

While our approach is general and can enable in-
teroperability of different standards, in this paper we
use as an example Bluetooth and UPnP service discov-
ery and configuration protocols. (Note that Bluetooth
has a TCP/IP profile that supports IPv6; however not
all devices in the market implement the IP stack. In
addition, even if the IP stack was available among all
Bluetooth devices, manufacturers would still need to
select among one of the many IP service discovery pro-
tocols such as UPnP, Zeroconf, SLP, etc.)

4.1 Semantics in Devices

4.1.1 Semantics in Bluetooth

The basic unit in the Bluetooth standard is a Device,
and each device may have one or more Bluetooth Ser-
vices. Each Bluetooth device contains a device name
and a 24-bit code called Class of Device (or CoD). CoD
contains information about the type of the device, and
the type of the available Bluetooth services on that
device. The 24-bit code is divided into Major Service
Classes (11 bits), Major Device Class (5 bits), Minor
Device Class (6 bits), and 2 spare bits which are re-
served for the CoD format type.

Figure 3 shows the fields of the 24-bit CoD. Starting
from the most significant bit, the first 11 bits (bit num-
ber 23 to bit number 13) represent the Major Service
Classes. Major Service Classes is a high level generic

23 13 8 2 0

Major Service Classes Major Device Classes Minor Device Classes 0 0

Figure 3. 24-bit Bluetooth Class of Device
(CoD) fields.

category of service class, which tells us what types of
services the device will provide. For example, if the
18th bit is set to one, this means that the device pro-
vides a Rendering service (Printing, Speaker, ...), and
if the 20th bit is set to one, this means that the de-
vice provides an Object Transfer service (v-Inbox, v-
Folder). The classification is very coarse, and we rarely
use it to determine the device type.

The next 5 bits represent the Major Device Class,
which define a general family of the device. For exam-
ple, if the value of Major Device Class is 00010, 00100,
00110, the device belongs to Phone, Audio/Video,
Imaging class. Under the Major Device Class, the de-
vice can be further classified into Minor Device Class,
which is represented by the following 6 bits of the CoD.
For example, under Imaging major class, there are four
Minor Device classes, which are display (00XXX1),
Camera (00XX1X), Scanner (00X1XX) and Printer
(001XXX). Here X means “don’t care.” A complete
mapping table is available as part of the Bluetooth
standard. CoD is available when a Bluetooth device
is discovered. As we check the major and minor device
classes, we are able to determine what kind of device
it is.

Next we further query the Bluetooth device to re-
trieve the Service Record. Service Record consists en-
tirely of a list of Bluetooth service attributes. The key
attribute is the Service Class. The Bluetooth service is
an instance of a Service Class, which provides an initial
indicator of the capabilities of the service, and defines
what other attributes, including their types and seman-
tics, must or can appear in the service record. Service
Classes are specified using Universally Unique Identi-
fier (UUID) numbers, values for which are predefined.

4.1.2 Semantics in UPnP

In the general UPnP architecture, a basic unit is a
Device. Device contains zero or more UPnP Services.
Under each UPnP Service, a set of Actions is defined.
XML descriptions are provided at both Device and
UPnP Service level. The Device description includes
the general information about the device (name, man-
ufacturer, version, etc.), the list of UPnP Services, the
general information about each UPnP Service, and the
URL where the description of each UPnP Service is
located.

Under the general UPnP architecture, there are
a set of sub-standards defined for various types of
devices, such as MediaServer, which provides media

content; MediaRenderer, which consumes media con-
tent; and Control Point, which controls the media
flow. Under the UPnP Device XML Description, the
type is defined under “deviceType” tag. For exam-
ple, Media Service device has type “urn:schemas-upnp-
org:device:MediaServer:1.” By tracking this field, we
can figure out what the device is designed for.

The UPnP Service description consists of the de-
tails of Actions which are the basic execution unit
in the UPnP standard. Similarly, according to
the standard, the types of UPnP Services are also
fixed, which is defined under “serviceType” tag.
For example, a MediaServer may consist of a Con-
tentDirectory, whose service type is “urn:schemas-
upnp-org:service:ContentDirectory:1;” a Connection-
Manager, whose service type is “urn:schemas-upnp-
org:service:ConnectionManager:1;” and optionally an
AVTransport, whose service type is “urn:schemas-
upnp-org:service:AVTransport:1.” After checking the
service type, we will be able to retrieve the semantics
of each UPnP Service.

The lowest level of UPnP standard is the Ac-
tion. Standards are provided for actions as well.
For example, under UPnP Service ConnectionMan-
ager, there are three required actions: “GetProto-
colInfo,” “GetCurrentConnnectionIDs” and “GetCur-
rentConnectionInfo,” and two optional actions: “Pre-
pareForConnection,” and “ConnectionComplete.” The
meaning of each action is clearly described in the stan-
dard, which means that we can easily use a semantic
service description in OWL-S to describe the actions
and wrap them as semantically described services.

4.2 Semanticization

In this section we show how to semanticize a Blue-
tooth picture printer. Other devices and standards
(e.g. UPnP) follow a similar procedure.

Our Bluetooth discovery module uses BlueCove [4]
programming API, which is a LGPL (Lesser General
Public License) licensed JSR-821 implementation de-
veloped by Intel Research. As the Bluetooth discovery
module detects a new device, it will first ask for the
Bluetooth CoD (class of device). From the CoD, the
module finds out that the major device type is “Imag-
ing” and minor device type is “Printer.” At this point,
we know that this device is designed to print images.

Next, from the template repository, the discovery
module will pick a “Print Image” template. The “Print
Image” template is describing a semantic service that
takes a “ImageFile” as the input and has no out-
put. (“ImageFile” is a class defined in an associated
ontology that is widely used in the Task Computing
project.) The template has open fields, including the
service name, the service description, and the Blue-
tooth service record. The module will query the device

1JSR-82 is the official Java Bluetooth API.

Bluetooth

device

wrapped

as a service

UPnP

device

wrapped

as a service

Figure 4. Screenshot of a Task Computing
client. In this task, a user can select a MP3
song from her music repository, play it on the
Bluetooth speaker CK811, get the CD informa-
tion about the song, show the cover picture of
the CD and view information about the artist.
This specific task involves Bluetooth and UPnP
devices, Web Service provided by Amazon, and
OS functions.

(using BlueCove API), extract the information, and
fill these fields. When the semantic service description
is “complete,” the description is added into the Task
Computing service layer. Please note that Task Com-
puting requires that each service have a unique service
ID, which is also listed in the semantic service descrip-
tion. The creation of the unique ID is also part of the
Task Computing discovery module’s job.

Once the semantic service description is generated
and added into the Task Computing service layer, the
device is treated as just another semantic service. From
the upper layer’s point of view (Figure 1), there is no
difference between this and any other existing services.
Now users have complete freedom to build tasks out of
them.

4.3 Device Grounding

Generally speaking, the first step is to prepare the
parameters for the invocation of the corresponding re-
alization, since the values of the service inputs do not
always match the required parameters. According to
the OWL-S specification, it is possible to use an XSLT
script within the “xsltTransformationString” tag to de-
fine the transformation.

Although the XSLT script is adequate in some cases,
as devices are involved, there are many situations when
an advanced mapping is required and the mapping
cannot be defined by a script in “xsltTransformation-
String.” Let us use a Bluetooth based “Print Image”
as an example. The input of the service is an instance

of “ImageFile.” From this instance, we can either get
the URL of the image, or the image file itself encoded
in Base64. In either case, we can not directly use it
as the parameter and start to invoke the Bluetooth de-
vice. Instead, we have to download the image first (or
decode the image), then check which printing protocol
the Bluetooth device supports. The device may either
support the OBEX pushing, the Basic Image Profile, or
other similar protocols. For a specific printing protocol,
such as the OBEX pushing, we will further follow the
OBEX communication procedures. Additional steps
may include: requesting a connection, splitting the im-
age if it is too big, closing the connection after finish-
ing the push, and so on. Clearly, these steps can not
be handled only by an XSLT script. Our solution for
the above limitation of the XSLT script is to introduce
additional execution modules for different standards.
During the service execution, the Task Computing ex-
ecution engine will determine which execution module
it should use based on the semantic service descrip-
tion of the service. Then the engine will hand over
the inputs to the corresponding modules along with
the grounding part of the semantic service description.
The grounding part is important because it includes
the information that is required for the invocation. All
the details are handled within each execution module.

After the job is done, the Bluetooth execution mod-
ule will collect the outputs if any, send them back to
the Task Computing execution engine. The engine will
continue the task.

In this solution, we isolate the execution behaviors
specific to each standard inside each execution module,
thus it is easy to extend the solution and support new
standards in the future.

4.4 Trial System Deployment

We deployed a Task Computing system in our con-
ference room. The conference contains devices like
projector, TV, phone, printers, and many others. De-
vices implement different specifications. For example,
CK811 speaker is a Bluetooth based speaker system,
MCE is a UPnP based center. Under the same envi-
ronment, we also deployed some software based services
and web based services, and a task computing middle-
ware. When the middleware is launched, it discovered
the devices using different specifications first. On find-
ing a new device, the middleware wraps the device with
a semantic description. Meanwhile, the task comput-
ing middleware finds the semantic description of other
services.

After the initial discovery stage, the conference en-
vironment is ready to use. Task computing frame-
work provides several choices of clients. Our frame-
work provides several choices for clients. We used a
PC based client to discover and utilize devices and ser-
vices. When a visitor enters the conference room, she

uses the client to talk with the task computing mid-
dleware, and retrieves available services. Please note
that devices are wrapped as services, and the differ-
ence between device and other service is transparent
to the visitor. From the client, the visitor can build
tasks (with the help of the client) and execute them.

Figure 4 shows a screenshot of a task computing
client. The left top corner is the discovery pane. A
Bluetooth device “ORA Wireless Speaker CK811” is
wrapped and exposed as the semantic service “Play
(on CK811).” Along with a UPnP device “Play (on
MCE)” and other services, an interesting task is com-
posed. By executing the task, a user can select an MP3
song from her music repository (folder), and the CD
name is extracted. By invoking the Amazon web ser-
vice for search, the information of the CD is retrieved.
Then the CD cover image will be shown on the UPnP
media center, the information of the artist will be given,
and the MP3 song will be played on the Bluetooth en-
abled CK811 speaker.

5 Discussion

Semantics brings benefits in guiding service compo-
sition to end users. When services are wrapped with
semantic descriptions (OWL-S descriptions), the sys-
tem filters out unreasonable matches between services
and provides better suggestions for tasks (as service
compositions). Therefore, even an ordinary user with
very little knowledge about services available in an en-
vironment can easily achieve her own tasks without
being overwhelmed by a large number of services.

Although the benefits of using Semantic Web tech-
nologies have been recognized, their adoption has been
slow. One main reason is the lack of familiarity with
“semantics” by the community at large, and the natu-
ral resistance to learning a new language. This is partly
due to the complexity of semantic web languages. Even
if device manufacturers invest in learning and deploy-
ing semantic services, the costs of might be significant.
In this work we address these problems by capturing
and utilizing readily available semantics from existing
technologies and standards. Our solution does not re-
quire device manufacturers to produce new semantic
descriptions for their devices. Instead, from the proto-
cols already used by those devices, the Task Computing
framework internally generates semantic descriptions
on-the-fly. We believe that this approach will bring
down the current difficulty in adoption of semantic web
technologies and pave the way for wider adoption.

In our realization, we are using a centralized control
mechanism: namely all protocol translations are done
within the Task Computing environment (although we
can have multiple Task Computing devices working
distributively in our network). Compared with a dis-
tributed approach in which we wrap individual devices
with a protocol translation module, the centralized so-

lution requires no changes on the existing devices. It is
important because many devices have limited capabili-
ties, and they can not handle complex requirements. In
addition, a centralized approach is more cost-efficient,
as we can reuse the radios and specific communication
modules from the central translator.

In our deployment, we use a template library which
contains semantic service description templates maps
to some known types of devices. This allows us to
quickly semanticize devices on-the-fly. However, if the
system encounters an unknown device type, the system
will not find a template and therefore, cannot accept
the new device. Moreover, when the number of tem-
plates increases, there will be an increase in manage-
ment costs, and it may impact the scalability of the
system.

6 Conclusion and Future Work

In this paper, we introduced a comprehensive solu-
tion for interoperability among heterogeneous devices
in the context of the Internet of Things. Our solu-
tion relies heavily on semantic web technologies, but we
use them internally to our system. It extracts seman-
tics available from the existing standards the device
uses and describes them semantically on-the-fly. With
dynamically and internally provided semantic descrip-
tions, the devices are treated as semantic services and
users can enjoy the benefits brought by semantic web
technology when they build and execute tasks. The so-
lution hides complicated device details from users and
does not require any changes to the existing devices.
The same idea is applicable to a large number of exist-
ing web resources that have not yet been semantically
described.

References

[1] J. Allard, V. Chinta, S. Gundala, and G. Richard. Jini
meets UPnP: an architecture for Jini/UPnP interoper-
ability. In Proceedings of Application and the Internet,
2003.

[2] S. Arbanowski, P. Ballon, K. David, O. Droege-
horn, H. Eertink, W. Kellerer, H. van Kranenburg,
K. Raatikainen, and R. Popescu-Zeletin. I-centric com-
munications: Personalization, ambient awareness, and
adaptability for future mobile services. IEEE Commu-
nications Magazine, pages 63–69, 2004.

[3] A. Ayyagari. Bluetooth esdp for upnp, 2001.
http://www.comms.scitech.susx.ac.uk/fft/bluetooth/-
ESDP UPnP 0 95a.pdf.

[4] Blue cove. http://sourceforge.net/projects/bluecove/.
[5] G. Broll, E. Rukzio, M. Paolucci, M. Wagner,

A. Schmidt, and H. Hussmann. Perci: Pervasive service
interaction with the internet of things. IEEE Internet
Computing, 13(6):74–81, 2009.

[6] Bluetooth technology. https://www.bluetooth.org.
[7] Bonjour. http://www.apple.com/support/bonjour/.

[8] S. de Deugd, R. Carroll, K. Kelly, B. Millett, and
J. Ricker. SODA: Service oriented device architecture.
In IEEE Pervasive Computing, volume 5, 2006.

[9] L. M. S. de Souza, P. Spiess, D. Guinard, M. Köhler,
S. Karnouskos, and D. Savio. Socrades: A web service
based shop floor integration infrastructure. In The In-
ternet of Things, Lecture Notes in Computer Science,
pages 50–67. Springer Berlin/Heidelberg, 2008.

[10] A. Delphinanto, J. J. Lukkien, A. M. J. Koonen,
F. T. H. den Hartog, A. J. P. S. Madureira, I. G.
M. M. Niemegeers, and F. Selgert. Architecture of a bi-
directional bluetooth-upnp proxy. In Consumer Com-
munications and Networking Conference, 2007. CCNC
2007. 4th IEEE, pages 34 –38, jan. 2007.

[11] Digital living network alliance. http://www.dlna.org.
[12] E. Guttman. Service location protocol: Automatic dis-

covery of IP network services. IEEE Internet Comput-
ing, 3(4), 1999.

[13] Infrared data association. http://www.irda.org.
[14] Jini. http://www.jini.org/.
[15] S. Kasper and L. Buhrer. Jini discovers bluetooth,

2002. http://www.tik.ee.ethz.ch/ beutel/projects/-
sada/2002ss sa vincent bt jini.pdf.

[16] A. Katasonov, O. Kaykova, O. Khriyenko, S. Niktin,
and V. Terziyan. Smart semantic middleware for the
internet of things. In 5th International Conference
on Informatics in Control, Automation and Robotics,
pages 169–178, May 2008.

[17] J. King, R. Bose, H.-I. Y. a nd Steven Pickles, and
A. Helal. Atlas: A service-oriented sensor platform:
Hardware and middleware to enable programmable
pervasive spaces. In Proceedings of the 31st IEEE Con-
ference on Local Computer Networks, pages 630–638,
2006.

[18] O. Lassila. Applying semantic web in mobile and ubiq-
uitous computing: Will policy-awareness help. In Se-
mantic Web and Policy Workshop, 4th International
Semantic Web Conference, 2005.

[19] R. Masuoka, Y. Labrou, and Z. Song. Semantic web
and ubiquitous computing – task computing. AIS
SIGSEMIS Bulletin, 2004(3):21–24, October 2004.

[20] OWL-S: Semantic markup for web services.
http://www.daml.org/services/owl-s/1.0/owl-s.html.

[21] T. Payne and O. Lassila. Semantic web services. IEEE
Intelligent Systems, 19:14–15, 2004.

[22] J. S. Rellermeyer, M. Duller, K. Gilmer, D. Maragkos,
D. Papageorgiou, and G. Alonso. The software fabric
for the internet of things. In The Internet of Things,
Lecture Notes in Computer Science, pages 87–104.
Springer-Verlag, Berlin Heidelberg, 2008.

[23] G. Schiele, M. Handte, and C. Becker. Handbook of
Intelligence and Smart Environments, chapter Perva-
sive Computing Middleware, pages 201–227. Springer,
2009.

[24] S. Siorpaes, G. Broll, M. Paolucci, E. Rukzio,
J. Hamard, M. Wagener, and A. Schmidt. Mobile in-
teraction with the internet of things. In Embedded In-
teraction Research Group, 2004.

[25] Z. Song, Y. Labrou, and R. Masuoka. Dynamic service
discovery and management in task computing. In 1st
Annual International Conference on Mobile and Ubiq-
uitous Systems: Networking and Services, 2004.

[26] D. Steinberg and S. Cheshire. Zero Configuration Net-
working: The Definitive Guide. O’Reilly Media, Inc.,
2005.

[27] UPnP forum. http://www.upnp.org.

