Proceedings of 1993 International Joinl Conference on Neural Nelworks

Noise Robustness of EBNN learning

Ryusuke Masuoka *
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
E-mail: masuoka@cs.cmu.edu

Abstract

A variety of methods have recently been proposed for constraining neural networks to fit various constraints while
being trained. One such approach is to constrain the function approximated by the network to fit desired slopes, or
derivatives. Such slopes may be provided by the designer, as in Simard’s character recognizer network which was
constrained so that the slope of the output with respect to translations, rotations, etc. of the input should be zero.
Alternatively, target slopes may be generated automatically by program as in Explanation Based Neural Network
(EBNN) learning. While slope information is known to improve generalization, sometimes slope information as well
as value information is corrupted by noise.

This paper explores the effects of noisc in value and slope information on EBNN learning, compared with standard
backpropagation. Experimental results show several characteristics of noise robustness of EBNN learning.

1 Introduction

Among learning tasks that fall into the category of function approximation, there are some for which slope information
about the target function is available. Previous work in Explanation Based Neural Network (EBNN) learning ([Mitchell
and Thrun, to appear]) and in learning the invariance of pattern recognition with respect to a transformation group
([Simard et al., 1992]) has demonstrated the feasibility of exploiting slope information. Detailed mathematical and
experimental analyses of these methods are given in [Masuoka et al., 1993].

But for tasks like EBNN learning where slope information is created from less or no prior knowledge, noise in
slope information is inevitable. The effects of such noise have to be determined.

The goal of this paper is to determine the effects of noise on EBNN learning empirically. First we give a very
quick overview of EBNN learning. Then we devise a learning task of approximating a two-variable nonlinear function
and compare the performance of EBNN learning with that of standard backpropagation. We also determine the
characteristics of EBNN learning with respect to the noise levels of both value and slope information.

2 Overview of EBNN learning

In this section, we give a very quick overview of EBNN learning along with backpropagation. The details of the
algorithms of EBNN learning are given in [Masuoka et al., 1993].

The definitions in Table 1 are used throughout this paper. The squashing function of each unitis (1 +e7*)~ I We
denote by B¥ (output Jacobian), the derivative of the activation of the output unit k with respect to the activation of
the input unit i. (i.e. B¥ = Ox,/dx;.) We also denote by [Zk (desired output Jacobian), the desired derivative of the
activation of the output unit k with respect to the activation of the input unit i.

We distinguish two types of errors: The value error (Equation 1) and the EBNN slope error (Equation 2).

E, =% Y, Y Ga—x) (1

P pattern k; output

*Visiting Scientist From Fujitsu Laboratories Ltd., Kanagawa, Japan

1665



Xi
Xk
Wij
Ebpv Eeban
Ev » Ecbnn-s
Av W,‘j
Aeﬂ,n.swij
AW,‘j
TIbp-v
Tlebnn-v
Tlebnn-s
X

activation of unit i

desired output value of output unit k

weight from unit j to unit i

total errors for backpropagation and EBNN learning
value and EBNN slope errors

weight change with respect to value error

weight change with respect to EBNN slope error
last (total) weight change

stepsize of backpropagation for value error
stepsize of EBNN learning for value error
stepsize of EBNN learning for EBNN slope error
momentum coefficient

Table 1: Definitions

Eebnns = ]§ Z Z Z (B;k_ﬁlk)z

ppattern k:output i:input

For the sake of clarity we do not label any value with its pattern label p.

In EBNN learning, both the EBNN slope error function along with value error function used in standard backprop-
agation are used to train the neural networks. While the total error for standard backpropagation is given by Equation
3, the total error for EBNN learning is given by Equation 4.

Ebp = Tbp-v E,
Ecbon = Tebnn-v Ey + Nevon-s Ecpnn-s

We set the weight changes with respect to each energy as follows.

OE
Avw,j = - Y
()W[j
aEebnn—x'
Aebnn-swlj = - p)
Wij

(2)

3)
4)

®)

(6)

Then we update the weights as follows. The updating rule for ordinary back propagation is is given by Equation 7 and
that for EBNN learning is given by Equation 8.

Wi e— Wi + Tbpy AV wy + o A Wy

Wi —— Wi + Tebnn-v A, Wii + Tebnn-s Aebnn-s wi + « A wij

3 Experiments

We use the following two-variable nonlinear function for a learning problem. (See Figure 4.)

gr,y) = 0.5¢710G=02%6-099 4 (25 in(8xy) + 0.25

N
(8)

)

The task is to approximate this function. The neural network used in the experiments consists of two input units (for x
and y), six hidden units, and one output unit (for z = g(x, y)). The network is fully connected between layers and each

unit except input units has a bias.

One pattern for standard backpropagation consists of two input values, x and y, and one desired output value,
z = g(x, y), for the output unit. One pattern for EBNN learning consists of two input values, x and y, one desired output
value, g(x, y), and two desired output Jacobians, 9g/dx (x,y) and Og/0y (x, y).

The common conditions for the experiments in this paper are the following.

e We use the following parameters for weights and biases update. For backpropagation, nyp.y = 2, a = 0.9. For
EBNN learning: nebnn-y = %2, Tebn-s = 5, @ = 0.9. !

I These parameters are chosen empirically. (See [Masuoka et al., 1993] for the details.)

1666



e We draw random numbers from the uniform distribution on [—0.01,0.01] to set initial values of weights and
biases. We use the same initial values of weights and biases for all the experiments.

e Ten sets of twenty patterns are drawn randomly from the uniform distribution on [0, 1] x [0, 1] and they are
fixed. When we say the noise level is o, the random values are drawn from the normal distribution with variation
o and mean 0. This noise is added to the desired output values or desired output Jacobians or both. When the
resulting desired output value is less than 0.0 or greater than 1.0, it is reset to 0.0 or 1.0 accordingly.

e We call the noise level for desired output values the value noise level, and the noise level for desired output
Jacobians the slope noise level.

e Each trial is run for 200,000 epochs. Every 200 epochs, the average of square value errors of the network output
on the 26 x 26 equidistant lattice points on [0, 1] x [0, 1] is calculated. 2

1 25 25 i _] i j 2
— LI B 10
26x26§§[g (25’25) "(25’25)] (10)

We call this average the generalization error. The best generalization error during 200,000 epochs for each trial
is recorded.

e The performance for a particular learning method under certain conditions is measured by the average of the
best generalization error of the ten trials run for the ten sets of twenty patterns above.

First we run standard backpropagation, plotting performance as the value noise level is increased. See Figure 1.

We then run EBNN learning, plotting performance as the slope noise level is increased (with zero value noise).
See Figure 2.

We also run EBNN learning, changing both the value and slope noise levels. See Figure 3.

Empirical observations from this and other experiments are the following:

o EBNN learning generalizes better than standard backpropagation even if value noise is present. (Compare Figure
1 and the cross section of Figure 3 for which slope noise level = 0.0.)

o The greater the noise level for desired output values, the less the slope noise level matters. Especially, the level
of slope noise for which EBNN learning has the same performance as standard backpropagation increases, as
the value noise level increases.

4 Summary

In this paper, we have determined the effects of noise on EBNN learning empirically using a two-variable nonlinear
function.
Future work will include experiments using more realistic data.

References

[Masuoka ef al., 1993] R. Masuoka, S. Thrun, and T. M. Mitchell. Learning slopes by neural networks. Technical
Report to appear, CMU Computer Science, 1993.

[Mitchell and Thrun, to appear] Thomas M. Mitchell and Sebastian Thrun. Explanation based neural network learning
for robot control. In Stephen J. Hanson, Jack Cowan, and Lee Giles, editors, Advances in Neural Information
Processing Systems 5. Morgan Kaufmann, San Mateo, CA, to appear.

[Simard et al., 1992] Patrice Simard, Bernard Victorri, Yann LeCun, and John Denker. Tangent prop —a formalism for
specifying selected invariances in an adaptive network. In J. E. Moody, S. J. Hanson, and R. P. Lippmann, editors,
Advances in Neural Information Processing Systems 4, pages 895-903. Morgan Kaufmann, San Mateo, CA, 1992.

2Here we refer to the function calculated by the neural network as n(x,y).

1667



Perf. x 1073

100.00,
80.00 e
/ ~

60.00 /f‘/

40.00 //

20.00 /

-/
0.00
0.00 020 0.40 050 050 1.00
Value noise level

Figure 1: Performance of backpropagation: The per-
formance as defined above of standard backpropagation
against the value noise level is plotted. Noise is added
only to desired output values. The value noise level is
varied from 0.0 to 1.0 in increments of 0.05.

0.6

Value n.l.

!
Stope n.l.

Figure 3: Performance of EBNN learning (2) : The
performance as defined above of EBNN learning against
both the value and slope noise levels is plotted. See the
main text for the empirical observations.

Perf. x 103

100.00.

0.00

Slope noise level

Figure 2: Performance of EBNN learning (1): The per-
formance as defined above of EBNN learning against the
slope noise level is plotted as the solid line. Noise is added
only to desired output Jacobians. The slope noise level is
changed from 0.0 to 2.0 with stepsize 0.1. The dotted line
is the performance of standard backpropagation with no
noise in the training patterns. (See Figure 1 where the
value noise level is 0.0.) Notice that solid line and the
dotted line cross around where the noise level is 1.2. That
is the crossover point where the desired output Jacobians
are degraded enough to match the performance of standard
backpropagation.

Figure 4: Target function

1668




