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This paper proposes a neural network system based on fuzzy logic which enables
easy conversion between neural networks and fuzzy systems.

In the proposed system, the network is initialized based on existing knowledge, and
the network extracts knowledge acquired through learning. The system also
implements the time-consuming rules of fuzzy systems automatically and tunes
membership functions. This paper also formulates a procedure for building
structured neural networks based on a fuzzy inference system. The usefulness of
the networks was verified by applying them to bond-rating problems. The percentage
of correct answers involving unknown data was 96 % with our networks, compared
to 80 % with conventional three-layer neural networks. Also, the time required for
learning was reduced by a factor of 40.

1. Introduction

Information processing using neural net-
works is characterized by knowledge acquisition
based on learning. However, before this type of
processing can be put into practical use, the
problems of traps into local minima that depend
on the initial state and difficulties in represnting
acquired knowledge must be overcome.

Researchers have tried to combine neural
networks and fuzzy theory to solve these
problems. Towell’s neural network", which is
based on if-then rules, can acquire new rules
through learning. However, using his methods, a
network with sufficient accuracy tends to be too
large for practical purposes. Horikawa et al
propose a fuzzy modeling technique® for
simultaneously identifying control rules and
tuning membership functions. This technique
begins without control rules, and then identifies
new control rules through learning. However, we
believe that such a process will cause instability
in the input-output map during learning, thus
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making it unsuitable for learning in an actual
plant and limiting it to a very narrow range of
applications.

The neurofuzzy system we propose converts
between fuzzy and neural network models while
maximizing the advantages of both® *. Neuro-
fuzzy systems convert expert knowledge based
on fuzzy rules into neural networks, thus
acquiring new knowledge through learning. They
then analyze the internal representation of the
postlearning neural networks within the frame-
work of fuzzy theory.

Our fuzzy-logic-based neural networks ini-
tially obtain knowledge from experts and then
acquire additional knowledge through learning.

This paper formulates the procedure for
building these neural networks and discusses
their application to bond-rating problems. Since
our networks are initialized by expert know-
ledge instead of random numbers, they need a
smaller number of learning steps and generalize
better than conventional layered neural net-
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works. Also, since the knowledge source
obtained is readily identifiable, internal represen-
tation can be analyzed using methods similar to
the method used in fuzzy inference. Rules and
membership functions are automatically tuned
using the neural networks’ learning facilities, in
contrast to the conventional, time-consuming
process.

2. Symbolism and connectionism

Since the development of the first widely
acknowledged electronic computer (ENIAC) in
1946, people in the scientific community have
dreamed of expanding their knowledge by using
computers. Symbolism and connectionism are
two, often contrasting, approaches to artificial
intelligence and are both paradigms of the
information processing done by humans.

Symbolism assumes that all human intellec-
tual information processing, including problem
solving and inference, is conducted by manipu-
lating symbols. High-level information process-
ing, for example, induction, analogy, and
inference from hypotheses, is thus achieved
through sequential logic processing based on this
manipulation. The symbolism used in the early
days of artificial intelligence was therefore
considered the most powerful means to imple-
ment Al One reason for this belief was that
sequential logic processing of symbols could be
easily carried out on machines based on the von
Neumann architecture. Fuzzy theory came from
the fuzzy set theory proposed by Lotfi Zadeh” in
1965. It describes logical knowledge by if-then
production rules, and represents subjects and
ambiguities by using membership functions. It
handles both objective logic and subjective
intuition, and is especially useful for imple-
menting intellectual information processing.
Using fuzzy theory, we can construct knowledge
models representing subjective thinking and
judgment, which although vague and ambiguous,
can be understood empirically by experts.

Since Mamdani put fuzzy theory into prac-
tical use for steam engine control in 1974%, this
field has grown rapidly and now covers a num-
ber of control applications. Two examples of
these applications are control of a cement kiln”
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and chemical injection control in water purifi-
cation plants®.

Connectionism is a massively parallel and
highly distributed processing paradigm which is
designed to achieve flexible information proc-
essing based on intuition or incomplete data. Its
basic element is the information processing unit,
which exchanges simple messages with other
information processing units. Complex proc-
essing is represented by a network combining
many basic elements. Knowledge is described by
the characteristics of each unit and the structure
of the network. Connectionist models are flexible
systems that perform pattern recognition, and
process sense-based information and other
intellectual information that is difficult to
process with conventional symbolic processing.
Neural networks are used to implement connec-
tionism, and are composed of processing units
called neurons which have simple functions and
exchange information with each other. Parallel
and distributed information processing is
achieved using the competition-and-cooperation
principle. Neural networks also have a training
rule whereby the weights of connections are
adjusted on the basis of presented examples.
This enables the neural network to adapt to
changes in the environment. Typical neural
networks are interlined networks consisting of
one layer with a feedback connection and other
layers having multiple players with no connec-
tion between the neurons within each layer.
Layered neural networks learn using error back-
propagation”, which is a technique used for
robot control'” and image recognition'”.

There are however several problems associ-
ated with fuzzy theory:

1) It is difficult to describe pattern information
other than symbols.

2) Knowledge from experts is specialized and
difficult to generalize.

3) The system must be tuned manually, which
requires much time.

One of the main factors limiting the
application of fuzzy-logic is the lack of
established methods for tuning inference rules
and membership functions. Up to now, most
practical applications have been in home
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appliances.

Neural networks also have problems:

1) Logical rules from experts cannot always be
directly implemented.

2) Knowledge acquired through learning is
distributed over the network.

3) There is no function to explain inference
processes.

The inability to extract knowledge acquired
through learning in a form that i1s under-
standable to humans greatly hinders the
practical application of neural networks. This is
especially true for plant fault-diagnosis,
consulting, and other jobs requiring such an
extraction.

3. Building fuzzy-logic-based neural networks
3.1 Describing existing knowledge

Mamdani and other researchers have
proposed various techniques for fuzzy inference.
Our system uses a multiple fuzzy inference
format based on if-then production rules.

Given n rules, the i-th rule is written as:

Rule’ :if x, is Ai"" and x, is A}™ and --- and
X, is A" theny is B'” with w'
(L = 1) 2’ Yy n)v """"" (1)

where x; § = 1, 2, ***, m) 1s an input variable, y
is the output variable, A; ¢ = 1, 2, -=*, m) and
B are fuzzy sets defined by membership func-
tions 4 (x;) and us(y), t*/ and t” are numbers
assigned to fuzzy sets corresponding to input
variable x; and output variable y and indicate
the membership functions used by these
variables, and w' 1s the fuzzy importance
assigned to the rule.

Given the input value x = (x{, xJ, x§, =, x%),
the antecedent fitness of the i-th rule is obtained
as:

JrE g ) X gy () XX

X ,(LA';"m (xgl L e (2)

where X indicates a fuzzy logical product
operation.

The fitness obtained 1s used to determine the
inference result 15' (y) of the rule as follows:
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Fig. 1 — Structured neural network similar to fuzzy
inference system.

us'y) = f 'ﬂgiy()’) cWE, T e (3)

where * indicates multiplication.

The final inference result us(y) is obtained by
adding the fuzzy sets resulting from inferences
based on n rules,

us) =8 0) +us') + v s ). (@)

The final result of fuzzy inference repre-
sented by a membership function is not suitable
for robot control or other practical applications,
which is why defuzzification is introduced to
obtain representative output values. Using the
center of gravity method, we obtain the repre-
sentative value y' by calculating the centroid of
the final inference result us(y) as follows:

o Jyus ) dy

T fusOndy

3.2 Conversion to neural networks

The seven-layer structured neural network
operates as a fuzzy inference system (see Fig. 1).
The number k., given to membership function
st @ =1, 2,3, -+, m) in layer 3 is the total
number of membership functions used by the i-th
input variable. The number &, given to member-
ship function us’ ¢ = 1, 2, 8, =+, k,) is the total
number of membership functions used by the
output variable. The black circles are sigmoidal-
function neurons, and the white circles are
linear-function neurons. The input-output activi-
ties of these neurons is given by Equation (6)
below (see Fig. 2).
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Fig. 2 - Neuron model.

S = ; X;W; —Hy
1/{1+exp(—8)} Sigmoidal

y = T e (6)
S Linear

where x; is the input to the unit, w; is the weight

of the connections between units, @ is the unit

threshold, and y is the output of the unit.

Our proposed network is related to fuzzy
inference as follows:

1) Neurons in layers 2 and 3 provide anteced-
ent membership functions.

2) Layer 4 handles antecedent proposition.
Fuzzy logical operation is achieved by
sigmoidal-function units.

3) The connections with layer 5 represent fuzzy
rules. The weight of a connection represents
the importance of the corresponding rule.

4) Neurons in layer 5 handle consequent
propositions.

5) The weights of connections with layer 6
represent consequent membership functions.

6) Layer 7 and beyond calculate the centroid
used in defuzzification.

3.2.1 Antecedent membership functions

The neurons in layers 2 and 3 of the
network provide antecedent membership func-
tions.

Fuzzy systems generally use monotonic
increasing membership functions. We also use
monotonic increasing sigmoidal functions for
approximated membership functions, for exam-
ple, Equation (6). Approximation errors are eval-
uated by using L'-norm, which gives the mean of
errors; LZ?-norm, which gives the sum of the
squares of errors; L“norm, which gives the
maximum error; and other quantities. A suitable
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L2nnorm is used to evaluate errors in error
back-propagation learning.

Consider the following monotonically in-
creasing membership function:

0 (x<b)
Y = arge (X) = Bl—ax (a<x<b), ceeeenenn %)
1 (b<x)

For this membership function, we define the
following quantity (L2-norm):

Aw,6) = [ 11/0+exp - (ux—0)) -

— Mrarge (x)lzdx. ......... (8)
The values of w and 8 that minimize A(w, 6) are
w = —5.3012/(a—b) and 8= —2.6506(a + b)/(a —b).
Also, consider the following monotonic de-
creasing membership function:

1 (x<a)
Y = Mhoman (X) = biax (a<x<b), ceererens )
0 (b<x)

For this membership function, we define the
following quantity (L2?- norm):

Bw, 6) = [ 11/(1+exp(- (wr )} -

— U small (x)|2d’XI """"" (10)

The values of w and @ that minimize B (w, 6) are
w = 5.3012(a —~b) and 8 = 2.6506(a +b)/(a —b).

Sigmoidal functions approximate triangular
and trapezoidal membership functions by com-
bining sigmoidal functions which approximate
monotonically decreasing and increasing mem-
bership functions.

3.2.2 Fuzzy logical operation

The neurons in layer 4 implement fuzzy
logical product operation. In this paper we talk
about the bounded product, which is a ¢t-norm
(see Fig. 3). A t-norm is a fuzzy logical product
operation which is an extend AND operation in
crisp set logic. The algebraic product and
drastic product are also in general use. Suppose
that one neuron approximates the bounded
product of input m, and connection weights
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Xm

w; @ = 1,2, -+, m) are given an identical value
w. Then the neuron’s function is governed by
y=1/(1 + exp { —~WwXiix; — 6)}) {see Equation
©)}.

Then, the following quantity can be defined
to obtain the values of w and fthat minimize

C w, 6):

Cw, 6) :‘J‘If; 11/ Q+exp{— (o, F2c,+ oo+
+x,) - (x, 02,0 @

(Dx,n)\zdxl dicyeor dc,, - e (11)

These values depend on the value of
m. From the above, we obt. .1 w,=w,=7.0 and
6=10.5. Figure 4a) shows the input-output rela-
tionship of the bounded product, and Fig. 4b)
shows that of the bounded product approximated
by a neuron.

3.2.3 Consequent membership functions

Consequent membership functions are writ-
ten by using the weights of the connections
between layers 5 and 6, and by assuming that the
k-th consequent membership function is defined
in the interval [0, 1]. This definition interval
simplifies subsequent discussion, but a general
interval [a, b] may also be used.

The p neurons in layer 6 correspond to
distinet p points {y; [0, 1] |i = 1, ---, p}. Func-
tion uz*(y) is implemented by the weights of the
connections of the k-th neuron in layer 5 with the
p neurons in layer 6 {i.e. z*(y) is the input to the
i-th neuron in layer 6}, and its values at points
other than y; are determined through appropri-
ate interpolation from the function value aty;.

3.2.4 Defuzzification

We developed a defuzzification scheme
which is based on the calculation of the centroid
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Fig. 4 — Fuzzy logical operation.

and 1s free of difficult division operations. This
scheme also maintains the neural network
structures and back-propagates errors.

In layer 6, the fuzzy membership function
Uz (v), which is the inference result, is represented
so that the p neurons in layer 6 correspond to
points {y; € [0, 1]]i = 1,
equally spaced in the definition interval. The

-+, p} which are

membership function u;(y) is represented by p
neuron outputs.

Layer 7 of the neural network, which is the
defuzzification layer, consists of two linear
neurons that calculate the signed moments of
rotation at 0 €0, 1]and 1 €[0, 1]. That is,
the neuron corresponding to 0 calculates M, =
Yitztyi) X (y; —0), and the neuron corresponding
to 1 calculates M, =% u50y;) X {y; —1).

The centroid is calculated from these
outputs using:

M,
0 — 0
Y MU_MI '

3.2.5 Teaching signals
Teaching signals are given to the structured
neural network in one of two ways:

1) An appropriate constanta > 0 is taken, and
¢ €[0, 1] 1s the centroid that the neural
network should learn. When the neuron
outputs of layer 7 are M, and M,, the neural
network is given a (0—c) and a (1—c¢) as
teaching signals. The error signals are
a(0-c)~M, and a(1-c)—M, meaning that
the teaching signals used here are given by
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the v coordinates at x=0 and x=1 of the line
with a slope of «a.

2) For M, and M,, which are the outputs of
neurons in layer 7, @« = M,—-M, is taken
adaptively, and the neural network is given
a(0—c)and a(l-c) as teaching signals and
a(0—-c)—-M, and a(1—-¢c)—~M, as error sig-
nals. That is, a line passes through ¢ that is
parallel to the line [(0, M), (1, M,)], and the
vy coordinates at x = 0 and x = 1 of that line
are treated as teaching signals.

4. Application to bond-rating problems

Bond rating, which indicates the degree of
certainty of bond redemption and interest
payment as simple symbolic investment infor-
mation, is used by many investors to help them
make decisions. The Japan Bond Research
Institute (JBRI), a typical Japanese bond-rating
organization, defines its bond-rating definition
for bond issuing companies as shown in Table 1.

Bonds are rated according to financial
indicators, for example, capital, ordinary in-
come, and debt, by experienced specialists. When
rating a bond, experts not only consider
quantitative data such as financial indices but
also qualitative data items. Therefore, the
modeling of bond rating is a very difficult
problem for conventional artificial intelligence
systems.

4.1 Initialization with existing knowledge
Bond-rating knowledge was used as existing
knowledge to initialize the neural networks. The

five financial indicators in Table 2 were used to
specify simple fuzzy rules serving as initial
knowledge.

4.1.1 Describing fuzzy rules

We built a rough bond-rating fuzzy model
using the financial indicators in Table 2. Bond
rating in Japan tends to judge investment safety
based on company size. We used ordinary profit
when writing basic rules because this financial
indicator is related to company size, and is
considered to be closely associated with bond

Table 1. JBRI bond-rating definitions

Rating Definition

AAA | Indicates the highest degree of protection
of principal and interest in the overall
judgment of major component factors.

AA Indicates a high degree of security but falls
slightly behind AAA in some component
factors.

A Indicates an acceptably high level overall
and excellence in some specific compo-
nent factors.

BBB | Indicates the medium degree, with pro-
mise of security in the future, but issuer
requires constant watching.

BB Indicates uncertainty as to the degree of
security when future prospects are taken
into consideration.

B Indicates that credit standing is extremely
low and future improvement is consider-
ed difficult. Future security is unascer-
tainable at present.

Table 2. Financial indicators

Item

Formula

Ordinary profit

Owned capital

Owned capital

Operating profit + Nonoperating profit — Nonoperating expenses

Capital + Stock issue costs + Legal reserve + Other reserves

% 100

Owned capital ratio

Operating income + Interest received + Dividends

Current assets + Fixed assets + Deferred charges

%100

Interest coverage ratio

Fixed liabilities

Interest paid + Discounts

Long-term debt ratio

x 100

Fixed liablities + Capital
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Table 3. Fuzzy rules
Rule Importance
Rule'! Rating is high if ordinary profit is high. 1.0
Rule* Rating is medium if ordinary profit is medium. 1.0
Rule? Rating is low if ordinary profit is low. 1.0
Rule! Rating is high if owned capital is high. 0.2
Rule® Rating is low if owned capital is low. 0.2
Rule® Rating is low if owned capital ratio is low. 0.2
Rule’ Rating is high if interest coverage ratio is high. 0.2
Rule?® Rating is high if interest coverage ratio is low. 0.2
Rule® Rating is high if long-term loan ratio is low. 0.2
Rule'® Rating is low if lortg-term loan ratio is high. 0.2

Ordipary
profit

Lonr-ter)
debt ratl’g

Fig. 5— Neural network initialized with bond-
rating knowledge.

rating. We also wrote auxiliary rules using four
other financial indicators. The basic rules
related to ordinary profit were assigned an
importance of 1.0, and the auxiliary rules were
assigned an importance of 0.2. Table 3 shows the
fuzzy rules we generated.

4.1.2 Conversion to neural networks

We converted the fuzzy rules that were
written as explained in section 4.1.1, “Describing’
fuzzy rules” into structured neural networks
using the method discussed in chapter 3. By
using the technique proposed here, knowledge
about bond-rating as represented by fuzzy rules
can be used to initialize the neural networks.

Figure 5 shows the fuzzy-logic-based struc-
tured neural network. The network, which
consists of neurons arranged in seven layers, was
initialized with bond-rating knowledge. There
are 5 neurons in layer 1, 11 in layer 2, 10 in
layers 3 and 4, 3 in layer 5, 10 in layer 6, and 2 in
layer 7.
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4.2 Knowledge acquisition through learning
and analysis of acquired knowledge

When the network is taught with financial
data about companies whose bonds have already
been rated by bond-rating organizations, it notes
the differences and connections between the
primitive bond-rating data given by us and the
data from expert bond-rating organizations. We
then return the acquired knowledge to the fuzzy
inference framework and analyze the network’s
internal representation.

4.2.1 Learning

We generated teaching data by referencing
bond-rating data published by the JBRI in 1989.
We selected 81 Japanese companies in the
electric and machinery fields, used the data of 56
of these companies that randomly selected, and
evaluated bonds for the 25 remaining companies.

Corporate financial indicators normalized to
a [0, 1] interval were then given to the network.
Since ordinary profit, owned capital, and the
interest coverage ratio had greatly deviated data
distributions, we applied abnormal-value elimi-
nation and/or logarithmic transformation to
change them to appropriate distributions before
normalizing them. Table 4 shows the ratings of
the companies whose data was used to teach the
neural network. The output rating values were
normalized to a [0, 1] interval to be used as
teaching data.

We used error back-propagation learning.
The network was taught the connection weights
and thresholds of layer 2 to provide the
antecedent membership functions, the connection
weights of layer 5 to indicate rule importance,
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and the connection weights of layer 6 to provide
the consequent membership functions. We did
not teach the network the connection weights or
thresholds of any other layer.

For comparison, the same data was used to
teach an ordinary three-layer neural network.
This network had five neurons in the input layer
and one in the output layer. We also
experimented by varying the number of units in
the hidden layer and the random numbers used
for initialization.

4.2.2 Membership function changes

The membership function indicating a high
ordinary profit shifted toward a higher ordinary
profit (see Fig. 6). The medium ordinary profit
and low ordinary profit membership functions
approached each other, and their shapes after
learning changed so that the entire area was
divided into two at about 50 billion yen. The
shape of the low owned-capital ratio membership
function became sharper.

By analyzing the changes in the shapes of
the membership functions, we learned the
following about the relationship between bond
rating and ordinary profit and between bond

rating and the owned capital ratio:
1) An ordinary profit of about 50 billion yen is

the dividing line.
2) The owned capital ratio influences bond

rating significantly when it is low.

4.2.3 Changes in rule importance

Rules 1, 5, and 6 became much more
important after learning (see Table 5), which
means that ordinary profit and owned capital
are the most important factors in bond rating.

Rules whpse values became negative are
considered to have the opposite meaning. Rule
10 changed to an apparent conflict in which the
bond rating is high even though the liability is
high. When one considers the changes in the
importance of Rules 7, 8, and 9 together with
Rule 10 after learning, the network seems to
have learned that leading enterprises with higher
ranking bonds tend to have larger liabilities
relative to the business size. This is a
noteworthy point peculiar to Japanese company

management.
Grade
10 Low Medium High

Table 4. Output assignment Y
Rating Output 0.5 : ------- : Before learning
— : After learning
AAA 0.9 .
AA 0.7 v N
A 0.5 0 a0 ~ 100 20 . ‘78'6
BBB 0.3 rdinary profit (billion yen) Owned capital ratio (%)
BB 0.1 Fig. 6 — Changes in membership functions.
Table 5. Changes in rule importance
Before After
Rule . .
learning learning
Rule'! Rating is high if ordinary profit is high. 1.0 2.5
Rule?® Rating is medium if ordinary profit is medium. 1.0 0.7
Rule?® Rating is low if ordinary profit is low. 1.0 0.6
Rule* Rating is high if owned capital is high. 0.2 0.8
Rule® Rating is low if owned capital is low. 0.2 2.2
Rule® Rating is low if owned capital ratio is low. 0.2 2.2
Rule” Rating is high if interest coverage ratio is high. 0.2 0.7
Rule® Rating is low if interest coverage ratio is low. 0.2 -0.2
Rule® Rating is high if long-term loan ratio is low. 0.2 0.0
Rule'® Rating is low if long-term loan ratio is high. 0.2 -0.1
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Table 6. Results of comparison

3-layer neural network

0.124
0.2f £ 0.055 ) TN
_[ 0‘079\ Neural fuzzy T ———
0 100 200 300 400 500 10000 11500

Training epoch

Fig. 7— Learning.

4.3 Comparison

We compared the bond rating results of our
network with those obtained from a three-layer
neural network (see Fig. 7). Our network was
structured and initialized according to the fuzzy
system. We verified that, before learning, our
network achieved the same accuracy as the
fuzzy system by using the conversion method
proposed in this paper. We assumed that the
optimum number of learning epochs minimized
the error in evaluation data and that learning
had converged when this value was reached.

Table 6 shows the percentages of correct
answers that our system and the three-layer
neural network gave after the optimum number
of learning epochs in response to evaluation
data. According to the results of experiments
conducted for comparison with the three-layer
neural network, the error relating to evaluation
data after the optimum number of learning
epochs was smallest when the hidden layer had
five units.

Our system required a much lower number
of learning epochs than the three-layer neural
network because bond-rating knowledge is
directly implemented in the form of fuzzy rules,
so the system begins learning with the accuracy
of the fuzzy system (see Table 6).

It can therefore learn much quicker than the
neural network, which is initialized by random
numbers. In addition, considering the percentage
of correct answers relating to data that the
system has not learned, our system seems to be
superior in terms of generalization capabilities.

The fuzzy system used for initial knowledge
can be returned to the accuracy of the neural

FUJITSU Sci. Tech. J., 29, 3, (September 1993)

Neural | Three-layer| Fuzzy
fuzzy neural system
network | network
Correct answers 96 % 80 % 84 %
Optlmum number of 300 11 500 _
learning epochs
Sum squared error 0.079 0.124 0.155

network. That is, the learning facilities of the
neural network can be used to automatically
tune rules and membership functions. In contrast,
it takes much time to perform such a tuning on
conventional fuzzy systems.

5. Conclusion

Structured neural networks, which 1n terms
of performance are equivalent to fuzzy inference
systems, have been proposed, and the procedure
for building them has been formulated.

We demonstrated that it is possible to
initialize a structured neural network with
existing knowledge, and explained the internal
representation after learning for applications in
bond rating. Our network required fewer
learning epochs and generalized better than a
conventional neural network.

We also showed that our network auto-
matically tunes fuzzy membership functions and
rules using learning.

One of the remaining problems is how to
extract rules automatically through learning for
problems that involve expert knowledge that is
difficult to describe using fuzzy rules. The
network was initialized using if-then rules
described using fuzzy logic, but initialization
using a different knowledge format, for example,
numerical expressions, could also be considered.
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